Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Virtuality’ gets real

13.08.2008
Up to now virtual reality has proved cumbersome as a design tool, but European researchers are finalising a system that brings ‘virtuality’ to the wider world.

Virtual reality (VR) is a powerful tool, but its true potential remains unrealised. Applications mixing the virtual and real worlds, called mixed or augmented reality (AR), are weak. There are few, reliable systems, and what exists are very expensive. Collaboration is limited and still relatively unsophisticated. And the state of the art is anchored to the desktop or multi-tiled, or multi-screen, displays. Both are fixed solutions.

But VR and AR could do so much more. They could enable onsite sketching of a proposed building design, to reveal the real-world impact on the cityscape, or allow teams to review, annotate and amend proposed and existing car designs. The technology could enable engineers and designers to collaborate with other, distant teams. And it could pave the way even for consumers to contribute to production of better, more successful products.

There are bottlenecks, however, and the IMPROVE project began life with the remit to break through them. “We worked on head-mounted displays, improved tiled displays, rendering and streaming software, colour calibration techniques, collaboration and networking, and novel interaction systems,” notes Pedro Santos, coordinator of the EU-funded project. It was quite a broad research agenda for a STREP project, he admits.

High-performance, head-mounted displays

The IMPROVE project really created a series of hardware and software innovations that, once combined, offer a full-specification VR and AR platform. But all of these individual innovations are useful on their own, and could be potentially commercialised as standalone products.

The Head Mounted Display (HMD), for example, offers a see-through lens that can overlay virtual images onto a real object or landscape, like a building or car.

The project developed three prototypes – two wearable and one handheld – that offer good resolution.

“Better yet, the handheld model can also block out daylight, so you don’t get the usual problem of sunlight washing out the image. It is a breakthrough, and the daylight-blocking HMD will feature this month at Siggraph 2008 in Los Angeles,” Santos remarks. Siggraph is the industry conference for computer graphics and interactive technologies.

IMPROVE also developed breakthrough video-streaming technology that offers high-quality stereoscopic streaming across a mobile network. “It takes a lot of processing power to render a virtual image onto a real landscape, mobile device CPUs cannot really cope. We developed a video-streaming protocol that allows a desktop to perform the rendering, but then streams a compressed signal across wireless networks,” explains Santos.

Rendering software

The platform’s rendering software itself marked another breakthrough. It takes images from high-dynamic range cameras, which offer a range of exposures on a single image, to calculate realistic reflections, shadows and light-intensity levels. It allows visualisation of a model from any direction in real time, after pre-processing.

“We are already in discussion with some companies about commercial opportunities for the rendering platform,” Santos reveals.

The team also developed marker and marker-less tracking systems. The first uses reflective markers to compute the position of real objects in a fixed reference frame. It allows the system to plot the shape of an object accurately.

Marker-less tracking is even cleverer. “In contrast to marker-based tracking, where we track labels with patterns on it, in marker-less tracking we detect feature points in real scenes and compare current images from a camera to calibrated reference images of the same scene to calculate the current position of a user,” explains Santos.

IMPROVE also developed innovative interaction systems for working with AR and VR. IMMIVIEW supports multi-modal, multi-user interaction, while IVIEW is a collaborative system for design sessions.

Finally, a colour-calibration technique developed by the IMPROVE team helps ensure that tiled banks of high-definition screens are all rendering colours faithfully. “You get big calibration problems with projectors on multi-tiled displays, because projectors vary, or projector bulbs deteriorate at different rates. It affects image quality, but our calibration-tool ensures faithful colour across the multiple screens.”

Design-intensive applications

Together, these components make up a complete VR and AR platform that enable functional applications required in the real world. The project performed studies with end-users to see what those applications should be.

The project chose two design-intensive domains to test their platform, architecture and automotive design. The two are a good fit. Car manufacturers can afford very expensive equipment and are quick to adopt improved systems, while architectural companies could really use VR and AR systems more widely, but have much tighter budgets.

“The mix of applications meant we had to develop low-cost but high-performance systems. The tests were successful, and the system performed well,” says Santos. (See follow-up story: ‘Virtual applications reach out to real world’.)

It is an impressive list of achievements, and some of the work will be continued in two follow-on projects, Maximus and Cinespace. Many of the components developed within the project are already on their way to commercialisation.

“It is unlikely that the platform will be commercialised as one product, but most of the components will have direct commercial potential and many of them are a real advance on what is currently available,” notes Santos.

The rendering software, the video streaming solution and the head-mounted displays all offer immediate solutions to existing problems, as does the tiled screen calibration and the collaboration tools.

The combined influence of all the components will mean that, finally, virtual reality is ready for the real world.

This article is part one of a two-part feature on IMPROVE.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>