Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Virtuality’ gets real

13.08.2008
Up to now virtual reality has proved cumbersome as a design tool, but European researchers are finalising a system that brings ‘virtuality’ to the wider world.

Virtual reality (VR) is a powerful tool, but its true potential remains unrealised. Applications mixing the virtual and real worlds, called mixed or augmented reality (AR), are weak. There are few, reliable systems, and what exists are very expensive. Collaboration is limited and still relatively unsophisticated. And the state of the art is anchored to the desktop or multi-tiled, or multi-screen, displays. Both are fixed solutions.

But VR and AR could do so much more. They could enable onsite sketching of a proposed building design, to reveal the real-world impact on the cityscape, or allow teams to review, annotate and amend proposed and existing car designs. The technology could enable engineers and designers to collaborate with other, distant teams. And it could pave the way even for consumers to contribute to production of better, more successful products.

There are bottlenecks, however, and the IMPROVE project began life with the remit to break through them. “We worked on head-mounted displays, improved tiled displays, rendering and streaming software, colour calibration techniques, collaboration and networking, and novel interaction systems,” notes Pedro Santos, coordinator of the EU-funded project. It was quite a broad research agenda for a STREP project, he admits.

High-performance, head-mounted displays

The IMPROVE project really created a series of hardware and software innovations that, once combined, offer a full-specification VR and AR platform. But all of these individual innovations are useful on their own, and could be potentially commercialised as standalone products.

The Head Mounted Display (HMD), for example, offers a see-through lens that can overlay virtual images onto a real object or landscape, like a building or car.

The project developed three prototypes – two wearable and one handheld – that offer good resolution.

“Better yet, the handheld model can also block out daylight, so you don’t get the usual problem of sunlight washing out the image. It is a breakthrough, and the daylight-blocking HMD will feature this month at Siggraph 2008 in Los Angeles,” Santos remarks. Siggraph is the industry conference for computer graphics and interactive technologies.

IMPROVE also developed breakthrough video-streaming technology that offers high-quality stereoscopic streaming across a mobile network. “It takes a lot of processing power to render a virtual image onto a real landscape, mobile device CPUs cannot really cope. We developed a video-streaming protocol that allows a desktop to perform the rendering, but then streams a compressed signal across wireless networks,” explains Santos.

Rendering software

The platform’s rendering software itself marked another breakthrough. It takes images from high-dynamic range cameras, which offer a range of exposures on a single image, to calculate realistic reflections, shadows and light-intensity levels. It allows visualisation of a model from any direction in real time, after pre-processing.

“We are already in discussion with some companies about commercial opportunities for the rendering platform,” Santos reveals.

The team also developed marker and marker-less tracking systems. The first uses reflective markers to compute the position of real objects in a fixed reference frame. It allows the system to plot the shape of an object accurately.

Marker-less tracking is even cleverer. “In contrast to marker-based tracking, where we track labels with patterns on it, in marker-less tracking we detect feature points in real scenes and compare current images from a camera to calibrated reference images of the same scene to calculate the current position of a user,” explains Santos.

IMPROVE also developed innovative interaction systems for working with AR and VR. IMMIVIEW supports multi-modal, multi-user interaction, while IVIEW is a collaborative system for design sessions.

Finally, a colour-calibration technique developed by the IMPROVE team helps ensure that tiled banks of high-definition screens are all rendering colours faithfully. “You get big calibration problems with projectors on multi-tiled displays, because projectors vary, or projector bulbs deteriorate at different rates. It affects image quality, but our calibration-tool ensures faithful colour across the multiple screens.”

Design-intensive applications

Together, these components make up a complete VR and AR platform that enable functional applications required in the real world. The project performed studies with end-users to see what those applications should be.

The project chose two design-intensive domains to test their platform, architecture and automotive design. The two are a good fit. Car manufacturers can afford very expensive equipment and are quick to adopt improved systems, while architectural companies could really use VR and AR systems more widely, but have much tighter budgets.

“The mix of applications meant we had to develop low-cost but high-performance systems. The tests were successful, and the system performed well,” says Santos. (See follow-up story: ‘Virtual applications reach out to real world’.)

It is an impressive list of achievements, and some of the work will be continued in two follow-on projects, Maximus and Cinespace. Many of the components developed within the project are already on their way to commercialisation.

“It is unlikely that the platform will be commercialised as one product, but most of the components will have direct commercial potential and many of them are a real advance on what is currently available,” notes Santos.

The rendering software, the video streaming solution and the head-mounted displays all offer immediate solutions to existing problems, as does the tiled screen calibration and the collaboration tools.

The combined influence of all the components will mean that, finally, virtual reality is ready for the real world.

This article is part one of a two-part feature on IMPROVE.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>