Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual money: User’s identity can be revealed much easier than thought

25.11.2014

Bitcoin is the new money: minted and exchanged on the Internet. Faster and cheaper than a bank, the service is attracting attention from all over the world. But a big question remains: are the transactions really anonymous?

Several research groups worldwide have shown that it is possible to find out which transactions belong together, even if the client uses different pseudonyms. However it was not clear if it is also possible to reveal the IP address behind each transaction. This has changed: researchers at the University of Luxembourg have now demonstrated how this is feasible with only a few computers and about €1500.

“It’s hard to predict the future, but some people think that Bitcoin could do to finance what the Internet did to communications”, says Prof. Alex Biryukov, who leads digital currency research at the University. “So I think especially for Luxembourg it is important to watch what happens with Bitcoin”.

The Bitcoin system is not managed by a central authority, but relies on a peer-to-peer network on the Internet. Anyone can join the network as a user or provide computing capacity to process the transactions. In the network, the user’s identity is hidden behind a cryptographic pseudonym, which can be changed as often as is wanted. Transactions are signed with this pseudonym and broadcast to the public network to verify their authenticity and attribute the Bitcoins to the new owner.

In their new study, researchers at the Laboratory of Algorithmics, Cryptology and Security of the University of Luxembourg have shown that Bitcoin does not protect user’s IP address and that it can be linked to the user’s transactions in real-time. To find this out, a hacker would need only a few computers and about €1500 per month for server and traffic costs. Moreover, the popular anonymization network “Tor” can do little to guarantee Bitcoin user’s anonymity, since it can be blocked easily.

The basic idea behind these findings is that Bitcoin entry nodes, to which the user’s computer connects in order to make a transaction, form a unique identifier for the duration of user’s session. This unique pattern can be linked to a user’s IP address. Moreover, transactions made during one session, even those made via unrelated pseudonyms, can be linked together. With this method, hackers can reveal up to 60 percent of the IP addresses behind the transactions made over the Bitcoin network.

“This Bitcoin network analysis combined with previous research on transaction flows shows that the level of anonymity in the Bitcoin network is quite low”, explains Dr. Alex Biryukov. In the paper recently presented at the ACM Conference on Computer and Communications Security the team also described how to prevent such an attack on user’s privacy. Software patches written by the researchers are currently under discussion with the Bitcoin core developers.

The University of Luxembourg, founded in 2003, is a multilingual, international research university with 6200 students and staff from all over the globe. Its research focuses on computational sciences, law and especially European law, finance, educational sciences as well as interdisciplinary research conducted by the Interdisciplinary Centre for Security, Reliability and Trust (SnT) and the Luxembourg Centre for Systems Biomedicine (LCSB).

Notes to editor

The full scientific article “Deanonymisation of clients in Bitcoin P2P network” as published in the Proceedings of the ACM Conference on Computer and Communications Security can be viewed here: http://orbilu.uni.lu/handle/10993/18679 . DOI: 10.1145/2660267.2660379 


Weitere Informationen:

http://orbilu.uni.lu/handle/10993/18679  - Full scientific article: “Deanonymisation of clients in Bitcoin P2P network”
http://wwwen.uni.lu/recherche/fstc/laboratory_of_algorithmics_cryptology_and_security_lacs  - Laboratory of Algorithmics, Cryptology and Security (LACS) at the University of Luxembourg

Sophie Kolb | idw - Informationsdienst Wissenschaft

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>