Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virtual 3-D ‘Knitting’ Adds New Stitch for Graphic Artists

21.08.2012
To put clothes on their characters, computer graphic artists usually simulate cloth by creating a thin sheet, then adding some sort of texture.

But that doesn’t work for knit sweaters. To make the image realistic, the computer has to simulate the surface right down to the intricate intertwining of yarn.

So scientists must, in effect, teach computers to knit – and graphic artists have to painstakingly model the 3-D structure of every stitch.

A new method for building simulated knitted fabric out of an array of individual stitches was reported at the 39th International Conference and Exhibition of Computer Graphics and Interactive Techniques earlier this month in Los Angeles by Cem Yuksel of the University of Utah; Jonathan Kaldor, of Facebook; and Steve Marschner and Doug James, Cornell University associate professors of computer science. The work was done when Yuksel and Kaldor were at Cornell.

The Cornell innovation is to create a 3-D model of a single stitch and then combine multiple copies into a mesh, like tiles in a mosaic. The computer projects the mesh onto a model of the desired shape of the garment, treating each stitch as a tiny flat polygon that stretches and bends to fit the 3-D surface. Then it “relaxes” the graphic image of each stitch to fit the shape of its polygon, just as real yarn would stretch and bend to fit the shape of the wearer.

The result is a simulation with detail down to the yarn level.

“We are actually changing the shape of the yarn loops that make up the stitches,” Marschner said, “simulating how they wrap around other loops.”

The researchers tested their method with several patterns from knitting books and created images of dresses, sweaters, a shawl and a tea cozy. The simulations are highly realistic, but the researchers noted that the results of knitting a particular pattern depend on the yarn and needles used, as well as the style of the individual knitter. The method has some parameters that can be adjusted to simulate the effects of different needles or yarn, or different yarn tension used by the knitter, they said.

The process is computationally intensive, requiring several hours to simulate a garment (cable stitching takes the longest). As of today it would not be practical for an interactive application such as virtual reality, Marschner said, but it would be usable for movies.

The research was supported by the National Science Foundation, the Alfred P. Sloan Foundation, the John Simon Guggenheim Memorial Foundation and Pixar.

For more information:

A complete project description and downloadable images: www.cs.cornell.edu/projects/stitchmeshes

A video demonstration of the process: www.youtube.com/watch?v=NG5C_a6rxrY

John Carberry | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>