Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech Unveils HokieSpeed, a Powerful Supercomputer

22.12.2011
Virginia Tech crashed the supercomputing arena in 2003 with System X, a machine that placed the university among the world’s top computational research facilities.

Now comes HokieSpeed, a new supercomputer that is up to 22 times faster and yet a quarter of the size of X, boasting a single-precision peak of 455 teraflops, or 455 trillion operations per second, and a double-precision peak of 240 teraflops, or 240 trillion operations per second.

That’s enough computational capability to place HokieSpeed at No. 96 on the most recent Top500 List (http://www.top500.org/), the industry-standard ranking of the world’s 500 fastest supercomputers. More intriguing is HokieSpeed’s energy efficiency, which ranks it at No. 11 in the world on the November 2011 Green500 List (http://www.green500.org/), a compilation of supercomputers that excel at using less energy to do more. On the Green500 List, HokieSpeed is the highest-ranked commodity supercomputer in the United States.

Located at Virginia Tech’s Corporate Research Center (http://www.vtcrc.com/), HokieSpeed – the word “Hokie” originating from an old Virginia Tech sports cheer – contains 209 nodes, or separate computers, connected to one another in and across large metal racks, each roughly 6.5 feet tall, to create a single supercomputer that occupies half a row of racks in a vast university computer machine room. X took three times the rack space.

Each HokieSpeed node contains two 2.40-gigahertz Intel Xeon E5645 6-core central processing units, commonly called CPUs, and two NVIDIA M2050/C2050 448-core graphics processor units, or GPUs, which reside on a Supermicro 2026GT0TRF motherboard. That gives HokieSpeed more than 2,500 central processing unit cores and more than 185,000 graphics processor unit cores to compute with.

“HokieSpeed is a versatile heterogeneous supercomputing instrument, where each compute node consists of energy-efficient central-processing units and high-end graphics-processing units,” said Wu Feng (http://people.cs.vt.edu/~feng/), associate professor with the Virginia Tech College of Engineering’s computer science and electrical and computer engineering departments. “This instrument will empower faculty members, students, and staff across disciplines to tackle problems previously viewed as intractable or that required heroic efforts and significant domain-specific expertise to solve.”

Still in the final stages of acceptance testing, Feng envisions HokieSpeed as Virginia Tech’s next war horse in research. As researchers from around the world have used System X to crack riddles of the blood system and further DNA research, Feng said HokieSpeed will be a next-generation research tool for engineers, scientists, and others.

HokieSpeed was built for $1.4 million, a small fraction -- one-tenth of a percent of the cost -- of the Top500’s current No. 1 supercomputer, the K Computer from Japan. The majority of funding for HokieSpeed came from a $2 million National Science Foundation Major Research Instrumentation grant. With federal and state budget crunches here to stay, Feng said HokieSpeed carries another plus: It can attract more international research projects to Virginia Tech, adding more to the College of Engineering’s income.

Among the vendors working with Feng on HokieSpeed are Seneca Data Inc. and Super Micro Computer Inc., who were the driving force behind the project, as well as NVIDIA Corp., for their technical support. Feng has worked with NVIDIA before, with the Silicon Valley-based technology firm naming Virginia Tech as a research center and the NVIDIA Foundation’s first worldwide research award for computing the cure for cancer being awarded to Feng.

In addition to HokieSpeed’s compute nodes, a visualization wall – eight 46-inch, 3-D Samsung high-definition flat-screen televisions – will provide a 14-foot wide by 4-foot tall display for end-users to be immersed in their data. Still under construction, the visualization wall will be hooked-up to special visualization nodes built into HokieSpeed and allow researchers to perform in-situ visualization.

This way, researchers can see in real-time if their computational experiment is turning out as expected, or if corrections or on-the-fly adjustments must be made, said Feng. Previously, weeks could pass by before all the data from a computational experiment was generated and then rendered as a video for viewing and analysis.

“What we want to do with HokieSpeed is to enable scientists to routinely do ‘what-if’ scenarios that they would not have been able to do or think of doing in the past,” Feng said. “It will facilitate the discovery process or accelerate the time to discovery. ”

For now, high-tech universities, government research labs, and major corporations use supercomputers on a regular basis, major organizations from the MIT to the Pentagon to Hollywood movie companies. As supercomputers such as HokieSpeed grow in brain size and diversity, and yet shrink in space, they will become more readily available to the public at large, said Feng. That is his ultimate goal.

“Look at what Apple has done with the smartphone and iPad. They have taken general-purpose computing and commoditized it and made it easy to use for the masses,” said Feng. “The next frontier is to take high-performance computing, in particular supercomputers such as HokieSpeed, and personalize it for the masses.”

Such access to supercomputers could help small businesses that do not have multi-billion budgets for cyberinfrastructure, to better design their products or the process in which their products are produced on the assembly line in the factory. Scientists at smaller universities could use supercomputers for their own research efforts.

“The possibilities are endless as we invent the future at Virginia Tech,” said Feng.

Steven Mackay | Newswise Science News
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>