Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech engineers work with InterDigital to increase wireless speed, accessibility

25.01.2011
In the first phase of a more than two-year study funded by InterDigital, Virginia Tech researchers have made great strides in the development of more reliable and efficient spectrum sensing techniques that will be needed to meet the ever-expanding demand for wireless technologies.

"The U.S. government has noted that broadband wireless access technologies are a key foundation for economic growth, job creation, global competitiveness, and a better way of life," explained Claudio da Silva, an assistant professor in Virginia Tech's Bradley Department of Electrical and Computer Engineering http://www.ece.vt.edu/faculty/cdasilva.php. He was referring to a recent report by the Federal Communications Commission on the need to ensure all Americans have access to broadband capability http://www.broadband.gov/download-plan/.

These spectrum-sensing technologies are envisioned to support high speed internet in rural areas, enable the creation of super Wi-Fi networks, and support the implementation of smart grid technologies. However, implementation of these technologies is seen as the "the greatest infrastructure challenge of the 21st century," according to the commission's report.

A major key to solving this challenge is in the design of wireless systems that more efficiently use the limited radio spectrum resources, said da Silva. "As a means to achieve this goal, the U.S. government, through the Federal Communications Commission, has recently finalized rules to make the unused spectrum in the television band available to unlicensed broadband wireless systems. In these systems, devices first identify underutilized spectrum with the use of spectrum databases and/or spectrum sensing and then, following pre-defined rules, dynamically access the "best" frequency bands on an opportunistic and non-interfering basis."

"The U.S. government has plans to release even more spectrum for unlicensed broadband wireless access," added da Silva. "While sensing is not a requirement for television band access, the Federal Communications Commission is encouraging the continued development of spectrum sensing techniques for potential use in these new bands."

"InterDigital's advanced wireless technology development efforts compliment this work at Virginia Tech," added James J. Nolan, InterDigital's executive vice-president of research and development. "We see the evolution of wireless systems to dynamic spectrum management technologies as being key to solving the looming bandwidth supply-demand gap by more efficiently leveraging lightly used spectrum. These cognitive radio technologies are an integral part of our holistic bandwidth management strategy, and we have invested significantly in this area of research."

During the first phase of the study, "by exploiting location-dependent signal propagation characteristics, we have developed efficient sensing algorithms that enable a set of devices to work together to determine spectrum opportunities", said William Headley, of Ringgold, Va., one of the Ph.D. students working on this project.

For the second year of the study, the focus is changing to the design of spectrum sensing algorithms that are robust to both man-made noise and severe multipath fading. "The vast majority of sensing algorithms were developed for channels in which the noise is a Gaussian process," said Gautham Chavali, of Blacksburg, Va., the second Ph.D. student working on this project. "However, experimental studies have shown that the noise that appears in most radio channels is highly non-Gaussian," Chavali added.

" Man-made noise, which arises from incidental radiation of a wide range of electrical devices, for example, is partially responsible for this occurrence," Chavali said. In addition, the algorithms to be designed will not rely on the common, but impractical, assumption of perfect synchronization and equalization by the radio front-end, which is an important concern when dealing with realistic multipath fading channels, such as indoor environments.

InterDigital develops advanced wireless technologies that are at the core of mobile devices, networks, and services worldwide. Using a holistic approach to addressing the bandwidth crunch, the company is developing innovations in spectrum optimization, cross-network connectivity and mobility, and intelligent data. InterDigital has provided funding for this 30-month research project, including the donation of state of the art laboratory equipment that will support different wireless projects at Virginia Tech.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>