Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the dynamic web

02.01.2009
Most of the knowledge and services potentially available on the worldwide web can’t be accessed through browsers and websites. A new European research project has devised a smart toolkit that unlocks and links the web’s hidden resources.

Change is coming to the IT world, says Dave Robertson, coordinator of the EU-funded OpenKnowledge research project.

Just as individuals are now storing, editing and sharing photos and videos on the web, other users from small businesses to CERN’s Large Hadron Collider are moving their data, computation, and collaboration into “the cloud” – the internet’s worldwide network of servers and computers, but also the millions of handheld devices, monitors, sensors and other components linked to it.

“More and more companies are pushing much of what they do out into the cloud,” says Robertson. “If that’s the way things are going, and if it’s going to be very large, then society needs some way to be able to take control of how that gets coordinated.”

Creating a toolkit to access, coordinate and exploit the cloud’s dynamic resources is what OpenKnowledge set out to accomplish.

If the IT world embraces OpenKnowledge, says Robertson, users will no longer have to rely on a small number of big companies to access interactive internet services.

“You would see lots of people who weren’t so specialised writing and using and sharing lots of specific keys that would unlock what’s available on the internet for themselves and others,” says Robertson.

Roles, rules, results

Suppose, says Robertson, a number of potential partners want to create a new service or product. One might manage a database, another can analyse the data, a third can package and present the results, while the fourth has marketing and management skills.

These potential partners could be anywhere in the world and could be using a wide variety of software, natural and computer languages, internet interfaces and devices.

The OpenKnowledge researchers – who, as members of an EU-funded project are themselves scattered from Scotland to Spain – set out to create a user-friendly system that would let these virtual partners find each other, define their respective roles, figure out the rules and sequences that will let them interact smoothly, and get their new enterprise up and running.

To accomplish that goal, the OpenKnowledge team created a new language for specifying the kind of processes that let different systems interact with each other. The language is called LCC, for Lightweight Coordination Calculus.

“We’ve gone for the simplest way to understand a process that we could possibly devise,” says Robertson.

The researchers also found a way to deal with the fact that the same step in a process is likely to be labelled in different ways by different components of the system.

For example, a handheld device might use an asterisk to signal that it is about to send a number while the database where that number is needed might expect to receive an input labelled “price.”

System engineers often approach this semantic problem by building what are called global ontologies – essentially dictionaries that specify the labels and properties of all the objects or events within a system.

In situations where such rules of interaction already exist, OpenKnowledge will find and use them.

Most of the time, however, that approach will not work because there is no way of knowing in advance what devices or systems will be interacting in a particular exchange.

In that case, OpenKnowledge uses statistical regularities to build a much smaller dictionary that defines only the steps that are needed for the purpose at hand.

“You know that you’re at some specific point,” says Robertson, “and you look to see what other people were doing at the same point. As the system gets used, you have a lot of interactions, possibly thousands or millions. That’s where your mapping comes from.”

But can I trust you?

Like anyone using the internet, OpenKnowledge clients are vulnerable. For example, a partner might provide poor quality services, or not be who he claims to be.

The researchers believe they have solved that problem to some degree by building measures of reputation into their software package. One approach is to measure how often interactions with a potential partner have gone well. Another is to see how often they have interacted with other trustworthy partners.

“We do exactly the same things that are used to rate web pages, but with these more complicated forms of information,” says Robertson.

All of the key OpenKnowledge functions – discovering and interpreting interactions, ontology matching, and reputation checking – reside in the OpenKnowledge kernel, an open-source software package that can be downloaded from the project’s website.

Robertson and his colleagues have tested OpenKnowledge in three real-world areas: healthcare coordination, proteomics research, and emergency response. These applications will be featured in a subsequent ICT Results feature on 29 December.

In the meantime, they are eager for others to use OpenKnowledge to unlock the cloud’s capabilities and choreograph their own ideas.

“It will only become revolutionary,” Robertson writes, “if clever people invent interactions that are really useful for lots of other people.”

The OpenKnowledge project received funding from ICT strand of the Sixth Framework Programme for research.

This is the first of a two-part feature on OpenKnowledge.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90308

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>