Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Nevada, Reno, scientists design indoor navigation system for blind

21.05.2012
Low-cost accessible software uses smartphone and robot technology

University of Nevada, Reno computer science engineering team Kostas Bekris and Eelke Folmer presented their indoor navigation system for people with visual impairments at two national conferences in the past two weeks.

The researchers explained how a combination of human-computer interaction and motion-planning research was used to build a low-cost accessible navigation system, called Navatar, which can run on a standard smartphone.

"Existing indoor navigation systems typically require the use of expensive and heavy sensors, or equipping rooms and hallways with radio-frequency tags that can be detected by a handheld reader and which are used to determine the user's location," Bekris, of the College of Engineering's Robotics Research Lab, said. "This has often made the implementation of such systems prohibitively expensive, with few systems having been deployed."

Instead, the University of Nevada, Reno navigation system uses digital 2D architectural maps that are already available for many buildings, and uses low-cost sensors, such as accelerometers and compasses, that are available in most smartphones, to navigate users with visual impairments. The system locates and tracks the user inside the building, finding the most suitable path based on the users special needs, and gives step-by-step instructions to the destination.

"Nevertheless, the smartphone's sensors, which are used to calculate how many steps the user has executed and her orientation, tend to pick up false signals," Folmer, who has developed exercise video games for the blind, said. "To synchronize the location, our system combines probabilistic algorithms and the natural capabilities of people with visual impairments to detect landmarks in their environment through touch, such as corridor intersections, doors, stairs and elevators."

Folmer explained that as touch screen devices are challenging to use for users with visual impairments, directions are provided using synthetic speech and users confirm the presence of a landmark by verbal confirmation or by pressing a button on the phone or on a Bluetooth headset. A benefit of this approach is that the user can leave the phone in their pocket leaving both hands free for using a cane and recognizing tactile landmarks.

"This is a very cool mix of disciplines, using the user as a sensor combined with sophisticated localization algorithms from the field of robotics," Folmer, of the University's Computer Science Engineering Human-Computer Interaction Lab, said.

The team is currently trying to implement their navigation system in other environments and integrate it into outdoor navigation systems that use GPS.

"My research is motivated by the belief that a disability can be turned into an innovation driver," Folmer said. "When we try to solve interaction design problems for the most extreme users, such as users with visual impairments, there is the potential to discover solutions that may benefit anyone. Though the navigation system was specifically developed for users with visual impairments, it can be used by sighted users as well."

For their work on the indoor navigation system for the blind, Bekris and Folmer recently won a PETA Proggy Award for Leadership in Ethical Science. PETA's Proggy Awards ("Proggy" is for "progress") recognize animal-friendly achievements. The navigation system was deemed such an achievement because it could decrease the need to rely on guide dogs.

They presented and demonstrated their research at the IEEE International Conference on Robotics and Automation in St. Paul., Minn. on May 15 and on May 7 at the CM SIGCHI Conference on Human Factors in Computing Systems, which is the premier international conference on human-computer interaction.

For more information on the system, visit http://eelke.com/navatar. For more information about the University of Nevada, Reno College of Engineering, visit http://www.unr.edu/engineering/.

Nevada's land-grant university founded in 1874, the University of Nevada, Reno has an enrollment of 18,000 students and is ranked in the top tier of the nation's best universities. Part of the Nevada System of Higher Education, the University has the system's largest research program and is home to the state's medical school. With outreach and education programs in all Nevada counties and with one of the nation's largest study-abroad consortiums, the University extends across the state and around the world. For more information, visit www.unr.edu.

Media Contact:
Mike Wolterbeek
Media Relations Officer
University Media Relations
University of Nevada, Reno/108
Reno, NV 89557
mwolterbeek@unr.edu
Media newsroom: http://newsroom.unr.edu
775-784-4547 phone
775-784-1422 fax

Mike Wolterbeek | EurekAlert!
Further information:
http://www.unr.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>