Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Universität Regensburg deploys new supercomputer

12.08.2015

QPACE 2 is among the most powerful and energy-efficient supercomputers of the world

A new supercomputer prototype, QPACE 2, was recently installed and deployed in the computing center of Universität Regensburg. Its predecessor, the research computer QPACE, was the most energy-efficient supercomputer of the world at its time. QPACE stands for „QCD Parallel Computing Engine''.


The new QPACE 2 system packs high performance in a single rack.

Photograph: Universität Regensburg

The new supercomputer was developed by a group of scientists in the Physics Department of Universität Regensburg led by Prof. Dr. Tilo Wettig, in collaboration with the company Eurotech. It is being used for numerical simulations of quantum chromodynamics (QCD), one of the fundamental theories of elementary particle physics.

Although the QPACE 2 prototype is very small and fits in a single rack, it has a peak performance of 310 TFlop/s, i.e., 310 trillion floating-point operations per second. The system is water-cooled but does not need chilled water, which makes free cooling possible year-round. To achieve this goal a new technology was developed that also allows for a very high packaging and power density.

QPACE 2 is the second best Xeon Phi system on the Green500 list of the most energy-efficient supercomputers in the world and is ranked number 26 overall. It also made the Top500 list of the most powerful supercomputers in the world, where it ranks number 379.

QPACE 2 uses the Intel Xeon Phi processor (code name „Knights Corner'') with 61 compute cores. Within a rack, 256 of these processors are interconnected by a powerful network based on PCI Express and Infiniband.

The development of QPACE 2 was funded by the German research Foundation (DFG) in the framework of the Collaborative Research Center SFB/TRR-55 “Hadron physics from lattice QCD” at Universität Regensburg. The development of QPACE 3, which will use an improved version of the Xeon Phi processor (code name “Knights Landing”), is planned for next year.

Contact person:
Prof. Dr. Tilo Wettig
Universität Regensburg
Institute for Theoretical Physics
Tel.: 0941 943-2004
Tilo.Wettig@physik.uni-regensburg.de

Alexander Schlaak | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-regensburg.de/

More articles from Information Technology:

nachricht The TU Ilmenau develops tomorrow’s chip technology today
27.04.2017 | Technische Universität Ilmenau

nachricht Five developments for improved data exploitation
19.04.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>