Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the Real Dirt on Granular Flow

05.12.2008
A handful of sand contains countless grains, which interact with each other via friction and impact forces as they slip through your fingers. When a handful becomes a load in an excavator bucket, those interactions multiply exponentially.

By solving large sets of differential equations, researchers can predict how sand or other granular material will move. Assistant Professor Dan Negrut and his team at the University of Wisconsin-Madison Simulation-Based Engineering Laboratory are developing innovative computer simulation methods for parallel computers to analyze granular material motion much faster than is possible with current technologies.

Even a supercomputer takes days to run a simulation charting the motion of millions of sand grains. Negrut hopes his simulation will analyze millions of grains in a single day, if not a matter of hours. The difference lies in how parallel computers approach the task. The central processing unit of a regular computer processes information sequentially, so grains are analyzed one after another. Parallel computers that rely on the graphics-processing unit (GPU) can simultaneously execute one instruction multiple times. This is how a graphics card processes pixels to render scene after scene in video games.

Negrut uses GPU computation to determine in-parallel sand movement. He and his students built a custom computer that handles almost 50,000 parallel computational threads at any given time. Currently, the team is working on detecting which particles collide with each other when, for example, granular material is scooped up by an excavator or driven over by a car.

“The task is challenging because there are hundreds of thousands of collisions you have to track,” Negrut says, adding the preliminary data on collision detection developed by graduate students Toby Heyn and Justin Madsen look promising.

Once Negrut and his students can accurately predict collisions between individual particles, they will determine what frictional contact force is actually at work between the particles. For this, they will collaborate with Professor Alessandro Tasora from the University of Parma, Italy. Heyn is traveling to Italy this January, and Tasora will visit the team in Madison next year. (Tasora visited Negrut in February.)

“Right now we’re expanding the type of problems and size of problems you can solve with a simulation,” says Heyn. “Simulation is important because it’s often faster and cheaper than experimental testing.”

Simulations of granular flow dynamics could be particularly useful for vehicle design. The team has worked with P&H Mining Equipment in Milwaukee, which builds three-million-pound electric shovels to dig in the oil sands near Alberta, Canada. Negrut’s simulations may help the company develop optimal designs for its equipment in a cost-efficient manner.

“You can change the parameters of a design easily and then quickly run a computer simulation to understand how the design change is impacting the overall performance of the computer model,” says Heyn.

In addition to construction equipment, Negrut’s simulations could lead to improved design of tire treads for vehicles that drive on mostly sand or dirt roads. Beyond vehicle applications, researchers could use such simulations to study atomic particles, pebble-bed nuclear reactors, pressure in silos, and crystals in prescription pills. The National Science Foundation and U.S. Army subcontracts support Negrut’s work, and NVIDIA Corp., a GPU manufacturer, is also a sponsor. Recently, P&H Mining has offered additional funding.

Sandra Knisely | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>