Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Uncovering the Real Dirt on Granular Flow

A handful of sand contains countless grains, which interact with each other via friction and impact forces as they slip through your fingers. When a handful becomes a load in an excavator bucket, those interactions multiply exponentially.

By solving large sets of differential equations, researchers can predict how sand or other granular material will move. Assistant Professor Dan Negrut and his team at the University of Wisconsin-Madison Simulation-Based Engineering Laboratory are developing innovative computer simulation methods for parallel computers to analyze granular material motion much faster than is possible with current technologies.

Even a supercomputer takes days to run a simulation charting the motion of millions of sand grains. Negrut hopes his simulation will analyze millions of grains in a single day, if not a matter of hours. The difference lies in how parallel computers approach the task. The central processing unit of a regular computer processes information sequentially, so grains are analyzed one after another. Parallel computers that rely on the graphics-processing unit (GPU) can simultaneously execute one instruction multiple times. This is how a graphics card processes pixels to render scene after scene in video games.

Negrut uses GPU computation to determine in-parallel sand movement. He and his students built a custom computer that handles almost 50,000 parallel computational threads at any given time. Currently, the team is working on detecting which particles collide with each other when, for example, granular material is scooped up by an excavator or driven over by a car.

“The task is challenging because there are hundreds of thousands of collisions you have to track,” Negrut says, adding the preliminary data on collision detection developed by graduate students Toby Heyn and Justin Madsen look promising.

Once Negrut and his students can accurately predict collisions between individual particles, they will determine what frictional contact force is actually at work between the particles. For this, they will collaborate with Professor Alessandro Tasora from the University of Parma, Italy. Heyn is traveling to Italy this January, and Tasora will visit the team in Madison next year. (Tasora visited Negrut in February.)

“Right now we’re expanding the type of problems and size of problems you can solve with a simulation,” says Heyn. “Simulation is important because it’s often faster and cheaper than experimental testing.”

Simulations of granular flow dynamics could be particularly useful for vehicle design. The team has worked with P&H Mining Equipment in Milwaukee, which builds three-million-pound electric shovels to dig in the oil sands near Alberta, Canada. Negrut’s simulations may help the company develop optimal designs for its equipment in a cost-efficient manner.

“You can change the parameters of a design easily and then quickly run a computer simulation to understand how the design change is impacting the overall performance of the computer model,” says Heyn.

In addition to construction equipment, Negrut’s simulations could lead to improved design of tire treads for vehicles that drive on mostly sand or dirt roads. Beyond vehicle applications, researchers could use such simulations to study atomic particles, pebble-bed nuclear reactors, pressure in silos, and crystals in prescription pills. The National Science Foundation and U.S. Army subcontracts support Negrut’s work, and NVIDIA Corp., a GPU manufacturer, is also a sponsor. Recently, P&H Mining has offered additional funding.

Sandra Knisely | Newswise Science News
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>