Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM School of Medicine finds that mobile phone technology helps patients manage diabetes

01.08.2011
Trial is 1 of the first to include a control group and follow patients for a year

An interactive computer software program appears to be effective in helping patients manage their Type 2 diabetes using their mobile phones, according to a new study by University of Maryland School of Medicine researchers.

The study is being published in the September issue of the journal Diabetes Care. The study, one of the first to scientifically examine mobile health technology, found that a key measure of blood sugar control – the amount of hemoglobin A1c in a person's blood – was lowered by an average of 1.9 percent over a period of one year in patients using the mobile health software. The findings support the further exploration of mobile health approaches to manage many chronic conditions, including diabetes.

"These results are very encouraging," says Charlene C. Quinn, Ph.D., R.N., an assistant professor of epidemiology and public health at the University of Maryland School of Medicine and the principal investigator. "The 1.9 percent decrease in A1c that we saw in this research is significant. Previous randomized clinical trials have suggested that just a 1 percent decrease in A1c will prevent complications of diabetes, including heart disease, stroke, blindness and kidney failure."

The study indicates that using mobile phones, the Internet and other mobile communications technology to keep patients healthy may have broad applications to help patients and their physicians manage many health conditions.

"Mobile health has the potential to help patients better self-manage any chronic disease, not just diabetes," Dr. Quinn explains. "This is one of the first large, reported, randomized clinical studies examining the mobile health industry, which is rapidly growing. The U.S. Food & Drug Administration just last month released draft guidance on how it intends to regulate the field. Our results can help define the science behind this new strategy for disease management."

People with Type 2 diabetes either do not produce enough insulin to convert sugar into energy or their cells ignore the insulin. A key measure of blood sugar control is the amount of hemoglobin A1c in a person's blood. A1c is a molecule in red blood cells that binds itself to blood sugar. The higher the level of sugar in the blood, the higher the level of A1c.

An A1c test provides a snapshot of a patient's average daily blood glucose levels over the previous two to three months. The American Diabetes Association recommends that a person's A1c be less than 7 percent. Most Americans with Type 2 diabetes have an average level of more than 9 percent, which greatly increases their risk for complications.

"We tell patients that they can meet these goals if they eat a healthy diet, exercise daily and take their medication as directed, but we don't really give them the tools to do that," says Dr. Quinn.

The yearlong study enrolled 163 patients with the help of 39 primary care doctors in Baltimore County, Baltimore City, Montgomery County and Anne Arundel County. Patients were divided into four groups based on the research assignment of their physician. Three patient groups received mobile phones loaded with the diabetes management software and the fourth group served as a control group. All patients in the study received a free blood glucose meter and testing supplies.

The software examined in the research provided real-time feedback on patients' blood sugar levels, displayed medication regimens and served as a "virtual coach." A patient's blood sugar test results were sent wirelessly from a blood glucose monitor to the mobile phone. If the level was too low or too high, the software on the phone prompted the person to take steps to correct it. The system also analyzed blood sugar levels and other patient information and sent computer-generated logbooks and suggested treatment plans to the patients' primary care doctor.

Karen Warmkessel | EurekAlert!
Further information:
http://www.umm.edu

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>