Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UM School of Medicine finds that mobile phone technology helps patients manage diabetes

Trial is 1 of the first to include a control group and follow patients for a year

An interactive computer software program appears to be effective in helping patients manage their Type 2 diabetes using their mobile phones, according to a new study by University of Maryland School of Medicine researchers.

The study is being published in the September issue of the journal Diabetes Care. The study, one of the first to scientifically examine mobile health technology, found that a key measure of blood sugar control – the amount of hemoglobin A1c in a person's blood – was lowered by an average of 1.9 percent over a period of one year in patients using the mobile health software. The findings support the further exploration of mobile health approaches to manage many chronic conditions, including diabetes.

"These results are very encouraging," says Charlene C. Quinn, Ph.D., R.N., an assistant professor of epidemiology and public health at the University of Maryland School of Medicine and the principal investigator. "The 1.9 percent decrease in A1c that we saw in this research is significant. Previous randomized clinical trials have suggested that just a 1 percent decrease in A1c will prevent complications of diabetes, including heart disease, stroke, blindness and kidney failure."

The study indicates that using mobile phones, the Internet and other mobile communications technology to keep patients healthy may have broad applications to help patients and their physicians manage many health conditions.

"Mobile health has the potential to help patients better self-manage any chronic disease, not just diabetes," Dr. Quinn explains. "This is one of the first large, reported, randomized clinical studies examining the mobile health industry, which is rapidly growing. The U.S. Food & Drug Administration just last month released draft guidance on how it intends to regulate the field. Our results can help define the science behind this new strategy for disease management."

People with Type 2 diabetes either do not produce enough insulin to convert sugar into energy or their cells ignore the insulin. A key measure of blood sugar control is the amount of hemoglobin A1c in a person's blood. A1c is a molecule in red blood cells that binds itself to blood sugar. The higher the level of sugar in the blood, the higher the level of A1c.

An A1c test provides a snapshot of a patient's average daily blood glucose levels over the previous two to three months. The American Diabetes Association recommends that a person's A1c be less than 7 percent. Most Americans with Type 2 diabetes have an average level of more than 9 percent, which greatly increases their risk for complications.

"We tell patients that they can meet these goals if they eat a healthy diet, exercise daily and take their medication as directed, but we don't really give them the tools to do that," says Dr. Quinn.

The yearlong study enrolled 163 patients with the help of 39 primary care doctors in Baltimore County, Baltimore City, Montgomery County and Anne Arundel County. Patients were divided into four groups based on the research assignment of their physician. Three patient groups received mobile phones loaded with the diabetes management software and the fourth group served as a control group. All patients in the study received a free blood glucose meter and testing supplies.

The software examined in the research provided real-time feedback on patients' blood sugar levels, displayed medication regimens and served as a "virtual coach." A patient's blood sugar test results were sent wirelessly from a blood glucose monitor to the mobile phone. If the level was too low or too high, the software on the phone prompted the person to take steps to correct it. The system also analyzed blood sugar levels and other patient information and sent computer-generated logbooks and suggested treatment plans to the patients' primary care doctor.

Karen Warmkessel | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>