Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrasound imaging now possible with a smartphone

23.04.2009
Imaging device fits in the palm of a hand

Computer engineers at Washington University in St. Louis are bringing the minimalist approach to medical care and computing by coupling USB-based ultrasound probe technology with a smartphone, enabling a compact, mobile computational platform and a medical imaging device that fits in the palm of a hand.

William D. Richard, Ph.D., WUSTL associate professor of computer science and engineering, and David Zar, research associate in computer science and engineering, have made commercial USB ultrasound probes compatible with Microsoft Windows mobile-based smartphones, thanks to a $100,000 grant Microsoft awarded the two in 2008.

In order to make commercial USB ultrasound probes work with smartphones, the researchers had to optimize every aspect of probe design and operation, from power consumption and data transfer rate to image formation algorithms. As a result, it is now possible to build smartphone-compatible USB ultrasound probes for imaging the kidney, liver, bladder and eyes, endocavity probes for prostate and uterine screenings and biopsies, and vascular probes for imaging veins and arteries for starting IVs and central lines. Both medicine and global computer use will never be the same.

"You can carry around a probe and cell phone and image on the fly now," said Richard. "Imagine having these smartphones in ambulances and emergency rooms. On a larger scale, this kind of cell phone is a complete computer that runs Windows. It could become the essential computer of the Developing World, where trained medical personnel are scarce, but most of the population, as much as 90 percent, have access to a cell phone tower."

"Twenty-first century medicine is defined by medical imaging," said Zar. "Yet 70 percent of the world's population has no access to medical imaging. It's hard to take an MRI or CT scanner to a rural community without power."

Shrinking the electronics over 25 years

Zar said the vision of the new system is to train people in remote areas of the developing world on the basics of gathering data with the phones and sending it to a centralized unit many miles, or half a world away where specialists can analyze the image and make a diagnosis. Zar wrote the phone software and firmware for the probes; Richard came up with the low-power probe electronics design. He began working on ultrasound system designs 25 years ago, and in that span he has shrunk the electronics from cabinet-sized to a tiny circuit board one inch by three inches. A typical, portable ultrasound device may cost as much as $30,000. Some of these USB-based probes sell for less than $2,000 with the goal of a price tag as low as $500.

Another promising application is for caregivers of patients with Duchene's Muscular Dystrophy. A degenerative disease that often strikes young boys and robs them of their lives by their late 20s, DMD is a degenerative disease for which there is no cure. The leading treatment to slow its progression is a daily dose of steroids. Patients often experience some side effects from steroids, which are dose related. These side effects include behavioral problems and weight gain. Researchers now know that physical changes in muscle tissue can indicate the efficacy of the steroids. Measuring these changes in muscle can be accomplished with ultrasound and may allow researchers to optimize steroid dosing to maximize efficacy while minimizing side effects.

"The idea is that caregivers, who otherwise have to transport a young person, often wheelchair bound, to a hospital or clinic on a regular basis for examination, can be trained to do ultrasound to track muscle condition," Zar said. "This could lower the dosage to the least effective amount to further increase quality of life of the patient and the caregiver and hopefully extend life. We're really excited about this application. The caregiver would only have to do a one-minute scan, transfer the data captured to the clinic, and the results would come back to the caregiver. A group at the WUSTL Medical School studying Duchene's Muscular Dystrophy is very interested in our devices and hopes they can incorporate them into their research plans."

Field trials in the Third World

Richard and Zar have discussed a potential collaboration with researchers at the Massachusetts Institute of Technology about integrating their probe-smartphone concept into a suite of field trials for medical applications in developing countries.

"We're at the point of wanting to leverage what we've done with this technology and find as many applications as possible," Richard said.

One such application could find its way to the military. Medics could quickly diagnose wounded soldiers with the small, portable probe and phone to detect quickly the site of shrapnel wounds in order to make the decision of transporting the soldier or treating him elsewhere on the field.

Richard and Zar demonstrated a fully functional smartphone-compatible USB ultrasound probe at Microsoft Research Techfest 2009 in February, and Zar presented the technology at the 2009 World Health Care Congress in Washington, D.C., April 14-16.

William D. Richard | EurekAlert!
Further information:
http://www.wustl.edu
http://news-info.wustl.edu/tips/page/normal/13928.html

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>