Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Engineering Tests Underground Border Security System

15.12.2010
The UA College of Engineering is testing an invisible border monitoring system that could revolutionize the way the U.S. conducts homeland security.

A unique underground surveillance system tested by University of Arizona researchers could be used to watch the entire U.S.-Mexico border continuously.

The border-monitoring system, known as Helios, consists of laser pulses transmitted through fiber-optic cables buried in the ground that respond to movements on the surface above. A detector at one or both ends of the cable analyzes these responses.

Helios is sensitive enough to detect a dog and can discriminate between people, horses and trucks. The system can be set to avoid being triggered by small animals and can also tell if people are running or walking, or digging, and in which direction.

Zonge, a geophysical engineering company based in Tucson, Ariz., recently installed a Helios test system in the desert near Tucson. The University of Arizona's Lowell Institute for Mineral Resources is leading the project to evaluate Helios as a tool for border surveillance, assisted by the UA National Center for Border Security and Immigration.

This is not new technology. Such systems are known as smart sensors and are already used to monitor large engineering works such as dams, pipelines, bridges and highways for cracks or seismic damage and other unseen strain forces at work deep within structures.

The Helios system consists of fiber-optic cables, lasers and detectors and is more accurately described as a "distributed acoustic sensor." It relies on the physics phenomenon of "optical backscattering" for its operation and is made by the British company Fotech Solutions.

"It's all a matter of scale," said Scott Urquhart, Zonge president and senior geophysicist, talking about the shift from detecting seismic events to measuring tiny subsurface vibrations caused by desert wildlife, both two- and four-legged.

"When very small vibrations hit the fiber-optic cables, the cables are slightly distorted," Urquhart said. "This distortion creates a unique signature change in the laser pulses, which can be detected by the Helios unit."

Urquhart said the Zonge team buried several types of cable at the desert test location. "Each had different properties in terms of flexibility or type of shielding," he said. "The advantage of a Kevlar cable, of course, versus a steel cable, is that the Kevlar cable cannot be found with a metal detector."

Nor does digging up the cable and cutting it clean through stop the system working, provided a Helios unit is connected to both ends of the cable, Urquhart said. "We can detect people digging up the cable, and even if they cut it the signal doesn't stop flowing from the cut back to the Helios unit," he said.

The resolution of the cable can be set to one-meter intervals, which means that the location of a cut cable, or people, or vehicles, can be pinpointed instantly to within one meter along a section of cable up to 50 kilometers long.

Moe Momayez, associate professor of mining and geological engineering at the UA Lowell Institute for Mineral Resources, is co-author of a report detailing the recent Helios tests.

"We can install cables up to 50 kilometers in length with only one Helios detector," he said. "Because the 50-nanosecond laser pulses travel at the speed of light, we can detect any event virtually instantaneously and deploy the appropriate resources to that location."

These 50-kilometer cable lengths, each with a Helios detector, can be strung together indefinitely to cover vast distances. For example, the border between the U.S. and Mexico is 1,969 miles, or 3,169 kilometers. Although the extreme topography of some border areas would make cable deployment difficult, dividing the border length into 50-kilometer segments equates to approximately 64 cable sections and detector units.

It is envisaged that Helios might be integrated into a larger system that includes mobile surveillance vehicles, such as those currently used by border patrol agents. For this and many other reasons it is too soon to name the cost of monitoring the U.S.-Mexico border, but all on the project agree it would be significantly lower than the ineffective barriers deployed to date, such as steel fences, disconnected grids of sensors, or hi-tech virtual fences.

Momayez's report co-author is Kevin Moffitt, a research scientist at the UA National Center for Border Security and Immigration. They conclude in the report that "with sufficient training, an observer could reasonably differentiate between events triggered by a group of people, cattle, horses, digging tunnels, cars or even ‘stealthy' border crossers."

Fotech is already working on automating Helios operation. Once a database of signals has been built up over an extended period of time, advanced pattern-recognition software could be employed to automatically identify events detected by the Helios system. The system would generate an alert if the software determined that a border crosser was being detected.

Zonge and Fotech have signed a two-year agreement to develop a border security application. The next step, according to the report, is a limited deployment along a stretch of border with a known high volume of border-crossing traffic. Zonge is seeking funding for this extended field trial, results from which would most likely be released at the discretion of the funding agency.

Zonge is considering working with a technical partner that could provide large-scale analysis and storage of the volumes of data that the test system will gather. Representatives from a major defense contractor were present at the tests, as was an observer from the office of Rep. Gabrielle Giffords.

Because Helios can detect if people are digging in or moving through underground tunnels, the system has great potential for perimeter security – prisons, for example – and mine safety. If such a system were installed in a network of mine shafts and tunnels, a trapped miner could just tap on the rock wall and the system could pinpoint his location to within a couple of feet.

CONTACTS

Pete Brown
College of Engineering
520-621-3754
pnb@email.arizona.edu
Steve Delgado
College of Engineering
520-621-2815
sdelgado@engr.arizona.edu

Jeff Harrison | University of Arizona
Further information:
http://www.arizona.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>