Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Engineering Tests Underground Border Security System

15.12.2010
The UA College of Engineering is testing an invisible border monitoring system that could revolutionize the way the U.S. conducts homeland security.

A unique underground surveillance system tested by University of Arizona researchers could be used to watch the entire U.S.-Mexico border continuously.

The border-monitoring system, known as Helios, consists of laser pulses transmitted through fiber-optic cables buried in the ground that respond to movements on the surface above. A detector at one or both ends of the cable analyzes these responses.

Helios is sensitive enough to detect a dog and can discriminate between people, horses and trucks. The system can be set to avoid being triggered by small animals and can also tell if people are running or walking, or digging, and in which direction.

Zonge, a geophysical engineering company based in Tucson, Ariz., recently installed a Helios test system in the desert near Tucson. The University of Arizona's Lowell Institute for Mineral Resources is leading the project to evaluate Helios as a tool for border surveillance, assisted by the UA National Center for Border Security and Immigration.

This is not new technology. Such systems are known as smart sensors and are already used to monitor large engineering works such as dams, pipelines, bridges and highways for cracks or seismic damage and other unseen strain forces at work deep within structures.

The Helios system consists of fiber-optic cables, lasers and detectors and is more accurately described as a "distributed acoustic sensor." It relies on the physics phenomenon of "optical backscattering" for its operation and is made by the British company Fotech Solutions.

"It's all a matter of scale," said Scott Urquhart, Zonge president and senior geophysicist, talking about the shift from detecting seismic events to measuring tiny subsurface vibrations caused by desert wildlife, both two- and four-legged.

"When very small vibrations hit the fiber-optic cables, the cables are slightly distorted," Urquhart said. "This distortion creates a unique signature change in the laser pulses, which can be detected by the Helios unit."

Urquhart said the Zonge team buried several types of cable at the desert test location. "Each had different properties in terms of flexibility or type of shielding," he said. "The advantage of a Kevlar cable, of course, versus a steel cable, is that the Kevlar cable cannot be found with a metal detector."

Nor does digging up the cable and cutting it clean through stop the system working, provided a Helios unit is connected to both ends of the cable, Urquhart said. "We can detect people digging up the cable, and even if they cut it the signal doesn't stop flowing from the cut back to the Helios unit," he said.

The resolution of the cable can be set to one-meter intervals, which means that the location of a cut cable, or people, or vehicles, can be pinpointed instantly to within one meter along a section of cable up to 50 kilometers long.

Moe Momayez, associate professor of mining and geological engineering at the UA Lowell Institute for Mineral Resources, is co-author of a report detailing the recent Helios tests.

"We can install cables up to 50 kilometers in length with only one Helios detector," he said. "Because the 50-nanosecond laser pulses travel at the speed of light, we can detect any event virtually instantaneously and deploy the appropriate resources to that location."

These 50-kilometer cable lengths, each with a Helios detector, can be strung together indefinitely to cover vast distances. For example, the border between the U.S. and Mexico is 1,969 miles, or 3,169 kilometers. Although the extreme topography of some border areas would make cable deployment difficult, dividing the border length into 50-kilometer segments equates to approximately 64 cable sections and detector units.

It is envisaged that Helios might be integrated into a larger system that includes mobile surveillance vehicles, such as those currently used by border patrol agents. For this and many other reasons it is too soon to name the cost of monitoring the U.S.-Mexico border, but all on the project agree it would be significantly lower than the ineffective barriers deployed to date, such as steel fences, disconnected grids of sensors, or hi-tech virtual fences.

Momayez's report co-author is Kevin Moffitt, a research scientist at the UA National Center for Border Security and Immigration. They conclude in the report that "with sufficient training, an observer could reasonably differentiate between events triggered by a group of people, cattle, horses, digging tunnels, cars or even ‘stealthy' border crossers."

Fotech is already working on automating Helios operation. Once a database of signals has been built up over an extended period of time, advanced pattern-recognition software could be employed to automatically identify events detected by the Helios system. The system would generate an alert if the software determined that a border crosser was being detected.

Zonge and Fotech have signed a two-year agreement to develop a border security application. The next step, according to the report, is a limited deployment along a stretch of border with a known high volume of border-crossing traffic. Zonge is seeking funding for this extended field trial, results from which would most likely be released at the discretion of the funding agency.

Zonge is considering working with a technical partner that could provide large-scale analysis and storage of the volumes of data that the test system will gather. Representatives from a major defense contractor were present at the tests, as was an observer from the office of Rep. Gabrielle Giffords.

Because Helios can detect if people are digging in or moving through underground tunnels, the system has great potential for perimeter security – prisons, for example – and mine safety. If such a system were installed in a network of mine shafts and tunnels, a trapped miner could just tap on the rock wall and the system could pinpoint his location to within a couple of feet.

CONTACTS

Pete Brown
College of Engineering
520-621-3754
pnb@email.arizona.edu
Steve Delgado
College of Engineering
520-621-2815
sdelgado@engr.arizona.edu

Jeff Harrison | University of Arizona
Further information:
http://www.arizona.edu

More articles from Information Technology:

nachricht Researchers achieve HD video streaming at 10,000 times lower power
20.04.2018 | University of Washington

nachricht An AI that makes road maps from aerial images
18.04.2018 | Massachusetts Institute of Technology, CSAIL

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>