Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two crystals are better than one

22.07.2015

Engineered structures that can alter the speed of light could benefit optical communication systems

A method for designing materials capable of slowing the propagation of light over a broad range of wavelengths has been developed by researchers at the A*STAR Institute of High Performance Computing [1].


Combining photonic crystals can slow the propagation of light for applications in optical communications. © 2015 A*STAR Institute of High Performance Computing

The speed of light in a vacuum is always constant — a fundamental concept made famous by Albert Einstein. But light propagates more slowly when it enters a different medium, such as glass.

The degree to which the speed is reduced is given by a material’s dielectric constant — a higher dielectric constant indicates slower propagation. Rather than rely on a limited source of natural substances, scientists have started to design optical materials with a broader range of beneficial properties including ‘slow’ light.

One approach is to combine two materials with different dielectric constants into a periodic structure. This can result in properties that dramatically differ from those of the constituent materials, particular when the length scale of the periodicity is similar to the wavelength of light.

“These so-called photonic crystals, when appropriately designed and in ideal conditions, can almost stop the propagation of light altogether,” says A*STAR scientist Gandhi Alagappan.

The requirement that the periodicity of the structure be similar to the wavelength of interest, however, is a limitation for practical applications. It means that most of these materials only work with light of a single color. Alagappan and his co-worker Jason Ching Png have now developed a scheme for designing photonic crystals that operate over a broader range of wavelengths.

Alagappan and Png considered a structure in which two different materials are layered on top of each other. To obtain two different periodicities, however, a third material with a dielectric constant midway between the two other materials would typically be needed.

This makes physically creating the structure difficult. The researchers instead focused on developing a mathematical technique to combine two materials in such a way that the dielectric profile in the stacking direction is almost the same as in the more complicated three-material structure (see image).

Alagappan and Png simulated the optical properties of their combined photonic crystal. They identified a broad range of wavelengths known as the strong coupling region that has a high density of slow modes.

“We have invented a linear optical multi-scale architecture that facilitates the creation of broadband slow light,” says Alagappan. “The proposed structure could potentially revolutionize current optical buffering technologies.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing. More information about the group’s research can be found at the Photonics and Plasmonics Group webpage.

Reference

[1] Alagappan, G. & Png, C. E. Broadband slow light in one-dimensional logically combined photonic crystals. Nanoscale 7, 1333–1338 (2015).


Associated links
A*STAR Research article

A*STAR Research | ResearchSEA
Further information:
http://www.researchsea.com

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>