Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better turbine simulation software to yield better engines

21.12.2011
Chen leverages Ohio Supercomputer Center resources to refine TURBO

For most of us, the word "turbomachinery" may conjure up images of superheroes or fast exotic cars, but in reality most people leverage turbomachinery to get things done nearly every day.


The research team of Jen-Ping Chen, Ph.D., associate professor of mechanical and aerospace engineering at the Ohio State University, used Ohio Supercomputer Center resources to create TURBO simulations for the flow field in an unducted counter-rotating fan. Credit: Chen/OSU


Simulations of pulsing vortex generating jets, a type of flow control device, created on Ohio Supercomputer Center systems by the research team of Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at the Ohio State University. Vorticity iso-surfaces are colored by velocity magnitude. Credit: Chen/OSU

Turbomachinery – pumps, fans, compressors, turbines and other machines that transfer energy between a rotor and a fluid – is especially instrumental in power generation in the aeronautic, automotive, marine, space and industrial sectors. For engine designers to achieve the most efficient propulsion and power systems, they must understand the physics of very complex air-flow fields produced within multiple stages of constantly rotating rotors and stators.

Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at The Ohio State University, is working to improve the computational fluid dynamics (CFD) software that engineers use to simulate and evaluate the operation of turbomachinery. Chen was the chief architect of that type of computer code, appropriately named TURBO, which he developed earlier for NASA.

Chen is leveraging the computational power of the Ohio Supercomputer Center to refine the software as it validates the flow field of engine components, specifically as it applies to high-pressure compressors and low-pressure turbines.

"The world is demanding increasingly cleaner, more efficient and reliable power systems," noted Ashok Krishnamurthy, interim co-executive director of OSC. "Therefore, it is essential that experts like Dr. Chen find innovative ways to improve the tools the engineers need to accomplish that goal, and we at OSC are proud to be able to provide the computational resources that make that effort successful."

Each turbomachinery component has unique physical characteristics that present difficulties in design and operation, such as stall in a compressor and cooling in a high-pressure turbine. With a simulation tool that is validated and optimized to run efficiently on a large computer cluster, engine designers will have more physical insight to the complex flow field, which will lead to reduced testing, reduced risk, faster time-to-market and lower costs.

While traditional wind-tunnel testing is often the most straightforward approach, it also comes with high costs and severe constraints on placing the measurement probes, according to Chen. Numerical simulation, using CFD, has provided an alternative for studying such flows at a lower cost and with unconstrained probe placement. Yet, the accuracy of a simulation depends on the accuracy of the mathematical model behind the simulation.

"Our goal is to develop a reliable prediction technology to help improve turbomachinery component design," said Chen. "The successful combination of CFD simulation and experimentation can greatly supplement the understanding of fundamental fluid behavior of gas turbine systems, thus enhancing the ability of engineers to develop more advanced engine components."

Chen's team is investigating three specific areas of current industrial interest: coupled fluid-structure interaction, active flow control and turbine film cooling. Improved numerical simulation will allow engineers to analyze complex flow fields and aeroelastic phenomena, such as flutter, limit-cycle oscillations, forced response, nonsynchronous vibrations and separated-flow vibrations, which arise from fluid-structure interaction.

Application of a newly developed flow control simulation model for vortex-generating jets in low-pressure turbines will help improve engineers' understanding of how flow control can be used to increase the performance and operability of gas turbine engines. And, finally, simulations can help engineers accurately predict the effectiveness of film cooling on heat transfer in a three-dimensional, unsteady, rotating environment with actual engine geometry.

Chen earned his doctorate and master's degree in aerospace engineering from Mississippi State University in 1991 and 1987, respectively, and his bachelor's degree in industrial engineering from Tunghai University in 1980. This study, "Numerical investigations of rotating components in air-breathing propulsion systems," is funded through the Air Force Office of Scientific Research and N&R Engineering.

Mr. Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Information Technology:

nachricht Satellite data for agriculture
28.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>