Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better turbine simulation software to yield better engines

21.12.2011
Chen leverages Ohio Supercomputer Center resources to refine TURBO

For most of us, the word "turbomachinery" may conjure up images of superheroes or fast exotic cars, but in reality most people leverage turbomachinery to get things done nearly every day.


The research team of Jen-Ping Chen, Ph.D., associate professor of mechanical and aerospace engineering at the Ohio State University, used Ohio Supercomputer Center resources to create TURBO simulations for the flow field in an unducted counter-rotating fan. Credit: Chen/OSU


Simulations of pulsing vortex generating jets, a type of flow control device, created on Ohio Supercomputer Center systems by the research team of Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at the Ohio State University. Vorticity iso-surfaces are colored by velocity magnitude. Credit: Chen/OSU

Turbomachinery – pumps, fans, compressors, turbines and other machines that transfer energy between a rotor and a fluid – is especially instrumental in power generation in the aeronautic, automotive, marine, space and industrial sectors. For engine designers to achieve the most efficient propulsion and power systems, they must understand the physics of very complex air-flow fields produced within multiple stages of constantly rotating rotors and stators.

Jen-Ping Chen, Ph.D., an associate professor of mechanical and aerospace engineering at The Ohio State University, is working to improve the computational fluid dynamics (CFD) software that engineers use to simulate and evaluate the operation of turbomachinery. Chen was the chief architect of that type of computer code, appropriately named TURBO, which he developed earlier for NASA.

Chen is leveraging the computational power of the Ohio Supercomputer Center to refine the software as it validates the flow field of engine components, specifically as it applies to high-pressure compressors and low-pressure turbines.

"The world is demanding increasingly cleaner, more efficient and reliable power systems," noted Ashok Krishnamurthy, interim co-executive director of OSC. "Therefore, it is essential that experts like Dr. Chen find innovative ways to improve the tools the engineers need to accomplish that goal, and we at OSC are proud to be able to provide the computational resources that make that effort successful."

Each turbomachinery component has unique physical characteristics that present difficulties in design and operation, such as stall in a compressor and cooling in a high-pressure turbine. With a simulation tool that is validated and optimized to run efficiently on a large computer cluster, engine designers will have more physical insight to the complex flow field, which will lead to reduced testing, reduced risk, faster time-to-market and lower costs.

While traditional wind-tunnel testing is often the most straightforward approach, it also comes with high costs and severe constraints on placing the measurement probes, according to Chen. Numerical simulation, using CFD, has provided an alternative for studying such flows at a lower cost and with unconstrained probe placement. Yet, the accuracy of a simulation depends on the accuracy of the mathematical model behind the simulation.

"Our goal is to develop a reliable prediction technology to help improve turbomachinery component design," said Chen. "The successful combination of CFD simulation and experimentation can greatly supplement the understanding of fundamental fluid behavior of gas turbine systems, thus enhancing the ability of engineers to develop more advanced engine components."

Chen's team is investigating three specific areas of current industrial interest: coupled fluid-structure interaction, active flow control and turbine film cooling. Improved numerical simulation will allow engineers to analyze complex flow fields and aeroelastic phenomena, such as flutter, limit-cycle oscillations, forced response, nonsynchronous vibrations and separated-flow vibrations, which arise from fluid-structure interaction.

Application of a newly developed flow control simulation model for vortex-generating jets in low-pressure turbines will help improve engineers' understanding of how flow control can be used to increase the performance and operability of gas turbine engines. And, finally, simulations can help engineers accurately predict the effectiveness of film cooling on heat transfer in a three-dimensional, unsteady, rotating environment with actual engine geometry.

Chen earned his doctorate and master's degree in aerospace engineering from Mississippi State University in 1991 and 1987, respectively, and his bachelor's degree in industrial engineering from Tunghai University in 1980. This study, "Numerical investigations of rotating components in air-breathing propulsion systems," is funded through the Air Force Office of Scientific Research and N&R Engineering.

Mr. Jamie Abel | EurekAlert!
Further information:
http://www.osc.edu

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>