Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuning in to the virtues of virtual labs

03.11.2008
The grid’s huge communication and computation capacities could let scientists gather data and run remote experiments anywhere in the world. European researchers have now mapped out how that can be done

Two years ago, researchers in the European-funded project RINGRID – Remote Instrumentation in Next-generation Grids – took on the challenge of mapping out how scientists round the world can efficiently carry out remote research using the ‘grid’.

The GRID is the emerging next-generation internet. It uses fibre-optic cables and advanced routers to carry torrents of data some 10,000 times faster than broadband and to connect thousands of computers and supercomputers worldwide.

The researchers at RINGRID view the grid as a rich new environment in which – with the right tools – scientists anywhere in the world can collaborate, control instruments, run experiments, and tap into the grid’s vast computing power.

Marcin Lawenda, deputy coordinator of the RINGRID project, sees great potential for remote research using the grid in the not-too-distant future.

“Then, almost all rare and expensive laboratory devices will be accessible to the worldwide science community via virtual laboratories,” he says. “Thanks to remote access and collaboration tools, data could be easily shared and scholars from different countries or continents will be able to work together.”

Blueprints for virtual labs

From the start, the RINGRID researchers knew that they needed to help scientists access the grid’s capabilities as simply and consistently as possible. If it was feasible, they wanted to design interfaces and protocols that could be used to set up and control many different kinds of experiments using different kinds of instruments and generating different kinds of data.

“We analysed the general aspects of remote instrumentation,” says Lawenda. “Many scientific communities were taken into consideration, along with their needs in terms of scientific devices and the requirements of those devices.”

RINGRID researchers worked with more than 50 scientists in a wide range of disciplines in order to learn what kind of equipment they use and how they carry out their research.

By identifying the most general and universal steps involved in setting up and carrying out almost any kind of experiment, the RINGRID team were able to develop coherent guidelines for developing practical, user-friendly interfaces and protocols for remote research – in effect, blueprints for building virtual laboratories.

They detailed those guidelines in their White Paper on Remote Instrumentation, published in July of this year. The white paper details every step in the remote research process, from the kinds of physical instruments that can be used, through the process of representing the devices in a virtual interface, and on through experimentation and data collection, distribution, visualisation, and analysis.

Trans-Atlantic trials

To test the concepts and methods they had developed, RINGRID partners carried out two remote research trials.

In the first experiment, researchers in Mexico were able to study the effects of noise and fading on a video transmission in Italy. The researchers used a virtual research platform called GRIDCC, developed by a separate European-funded research group working in co-operation with RINGRID.

In a second trial, researchers in Chile used a different virtual-lab platform called VLab, developed at the Poznan Supercomputing and Networking Centre, to perform nuclear magnetic resonance spectroscopic measurements in Poland. Polish researchers then used a Chilean system called UCRAV to perform similar measurements in Chile.

These experiments allowed the RINGRID researchers to note and respond to real-world challenges as well as technical and scientific issues.

“Many unexpected problems appeared,” says Lawenda, “for example communication delays, security issues, and transferring data via many administrative domains.”

However, Lawenda believes that the biggest remaining obstacles are neither technical nor practical, but educational. Most scientists and laboratory administrators are simply not aware of the potential for remote experimentation via grid computing.

“The most surprising issue in our research was low levels of awareness about remote instrumentation among device owners – institutes and laboratories,” says Lawenda. “In most cases, the owners of scientific instruments and their users are not aware that it is possible to put their resources into the grid environment and make them remotely available for research.”

Lawenda hopes that RINGRID’s white paper and other publications and presentations will spur the scientific community to link their labs to the grid, and design and carry out much more collaborative and remote experimentation.

Two other European-funded research projects, DORII and EXPReS, are building on RINGRID’s roadmap to push this process forward. The RINGRID project received funding from the Sixth Framework Programme for research.

Lawenda expects that the necessary grid infrastructure and fully functional systems for remote experimentation will be in place within five to seven years.

The challenge is to use that time to educate the scientific community to the many virtues of virtual laboratories on the grid.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90135

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>