Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tuning in to noisy interference

01.08.2011
Noise reduction in advanced computing circuits comes a step closer thanks to measurements of the noise spectrum affecting superconducting circuits

Establishing a detailed knowledge of the noise properties of superconducting systems is an important step towards the development of quantum computers, which will enable new types of computing.

However, the signals of these systems’ tiny electronic components, such as transistors on a chip, are so small that ambient noise creates interference. This problem is compounded by the delicate nature of the technology’s quantum physical states, which are also susceptible to noise.

Now, an international research team has successfully measured the noise spectrum of a superconducting circuit1—called a superconducting flux qubit—that is widely investigated for its potential in quantum computing applications.

Precise measurements of the environmental noise affecting superconducting flux qubits are important, according to team leader Jaw-Shen Tsai from the RIKEN Advanced Science Institute in Wako. “They may give us crucial information about the microscopic origin of the noise source, about which we have no solid understanding at all,” he says.

The superconducting flux qubit studied by the researchers is a circuit consisting of several junctions, and is a key technology in quantum computing because it can be integrated into a chip (Fig. 1). The first hurdle cleared by the researchers was keeping the qubit stable, and therefore viable, long enough to complete the measurement of the frequency spectrum of the noise that would occur in a quantum computer. They achieved this by applying a series of magnetic pulses that effectively replenished the qubit’s quantum state. The net effect of the magnetic pulses was to suppress detrimental contributions from low-frequency noise, as the pulses affect only the quantum states and not the noise.

Suppression of the low-frequency noise extended the lifetime of the quantum information in the qubit by almost an order of magnitude, and enabled the measurement of noise intensity in the system across three orders of magnitude in frequency from 0.2 to 20 MHz. This new-found knowledge on the noise spectrum will be valuable in developing strategies to counter such noise. “If we understand the nature of the noise, we may be able to reduce it considerably,” Tsai explains.

Moreover, the team’s strategy of extending qubit lifetimes to measure the noise spectrum is not limited to the study of quantum computing circuits; it could also be applied to other systems that operate under similar conditions. Medical imaging and sensing devices, for example, which often operate at the limits of signal resolution, could benefit from this noise reduction strategy.

Reference
Bylander, J., Gustavsson, S., Yan, F., Yoshihara, F., Harrabi, K. Fitch, G., Cory, D.G., Nakamura, Y., Tsai, J.-S. & Oliver, W.D. Noise spectroscopy through dynamical decoupling with a superconducting flux qubit. Nature Physics 7, 565–570 (2011).

The corresponding author for this highlight is based at the Macroscopic Quantum Coherence Team, RIKEN Advanced Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>