Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tracking gunfire with a smartphone

26.04.2013
You are walking down the street with a friend. A shot is fired. The two of you duck behind the nearest cover and you pull out your smartphone. A map of the neighborhood pops up on its screen with a large red arrow pointing in the direction the shot came from.

A team of computer engineers from Vanderbilt University’s Institute of Software Integrated Systems has made such a scenario possible by developing an inexpensive hardware module and related software that can transform an Android smartphone into a simple shooter location system.

They described the new system’s capabilities this month at the 12th Association for Computing Machinery/Institute of Electrical and Electronics Engineers Conference on Information Processing in Sensor Networks in Philadelphia.

For the last decade, the Department of Defense has spent millions of dollars to develop sophisticated sniper location systems that are installed in military vehicles and require dedicated sensor arrays. Most of these take advantage of the fact that all but the lowest powered firearms produce unique sonic signatures when they are fired. First, there is the muzzle blast – an expanding balloon of sound that spreads out from the muzzle each time the rifle is fired. Second, bullets travel at supersonic velocities so they produce distinctive shockwaves as they travel. As a result, a system that combines an array of sensitive microphones, a precise clock and an off-the-shelf microprocessor can detect these signatures and use them to pinpoint the location from which a shot is fired with remarkable accuracy.

Six years ago, the Vanderbilt researchers, headed by Associate Professor of Electrical and Computer Science Akos Ledeczi developed a system that turns the soldiers’ combat helmets into mobile “smart nodes” in a wireless network that can rapidly identify the location of enemy snipers with a surprising degree of accuracy.

In the past few years, the ISIS team has adapted their system so it will work with the increasingly popular smartphone.

Like the military version, the smartphone system needs several nodes in order to pinpoint a shooter’s location. As a result, it is best suited for security teams or similar groups. “It would be very valuable for dignitary protection,” said Kenneth Pence, a retired SWAT officer and associate professor of the practice of engineering management who participated in the project. “I’d also love to see a version developed for police squad cars.”

In addition to the smartphone, the system consists of an external sensor module about the size of a deck of cards that contains the microphones and the processing capability required to detect the acoustic signature of gunshots, log their time and send that information to the smartphone by a Bluetooth connection. The smartphones then transmit that information to the other modules, allowing them to obtain the origin of the gunshot by triangulation.

The researchers have developed two versions. One uses a single microphone per module. It uses both the muzzle blast and shockwave to determine the shooter location. It requires six modules to obtain accurate locations. The second version uses a slightly larger module with four microphones and relies solely on the shockwave. It requires only two modules to accurately detect the direction a shot comes from, however, it only provides a rough estimate of the range.

The research was supported by Defense Advance Research Project Agency grant D11PC20026.
Contact:
David Salisbury, (615) 322-NEWS
david.salisbury@vanderbilt.edu

David Salisbury | Vanderbilt University
Further information:
http://www.vanderbilt.edu

Further reports about: Defense Electrical Tracking Vanderbilt sensor arrays shooter location system

More articles from Information Technology:

nachricht A novel hybrid UAV that may change the way people operate drones
28.03.2017 | Science China Press

nachricht Timing a space laser with a NASA-style stopwatch
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>