Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Track Your Fitness, Environmental Impact with New Cell Phone Applications

21.11.2008
Researchers at the University of Washington and Intel have created two new cell phone applications, dubbed UbiFit and UbiGreen, to automatically track workouts and green transportation. The programs display motivational pictures on the phone's background screen that change the more the user works out or uses eco-friendly means of transportation.

Planning on gobbling a few extra treats this holiday season? Soon, your cell phone may be able to help you maintain your exercise routine and keep the pounds off over winter months, without your having to lift a finger to keep track.

Researchers at the University of Washington and Intel have created two new cell phone applications, dubbed UbiFit and UbiGreen, to automatically track workouts and green transportation. The programs display motivational pictures on the phone's background screen that change the more the user works out or uses eco-friendly means of transportation.

The applications are designed to change people's behavior for the better, said Sunny Consolvo, a recently graduated UW Information School doctoral student and one of UbiFit's creators. In a three-month field experiment, people using UbiFit with the background display kept up their workout routines over the winter holidays, a period when people typically slack off on exercise, while people without the display let their regimen slide.

UbiFit and UbiGreen are part of a larger project at the UW to use mobile computing in everyday activities and long-term goals such as fitness, said project leader James Landay, UW computer science and engineering associate professor. "You can't get fit in a short period of time in one place," he said. "It happens long-term, in many different places and ways."

Current versions of UbiFit and UbiGreen use an external sensing device (the Intel Mobile Sensing Platform) clipped to the user's waist. The device includes an accelerometer to sense the user's movement. The programs could run on phones with built-in accelerometers, such as the iPhone and the new Android G1, with no need for external equipment, Landay said. UbiGreen also relies on changing cell phone tower signals to determine whether a person is taking a trip.

The sensing device determines what the user is doing based on how it gets jiggled around, Landay said -- the localized motion at your waist will be different if you're walking, jogging, or sitting in a car. The sensing device sends signals three times per second via Bluetooth to the cell phone, where the application averages these rapid signals and translates them into, for example, a 20-minute jog or a drive to work.

UbiFit displays an empty lawn at the beginning of the week, and flowers grow as the user works out during the week. Different kinds of workouts yield different colored flowers. Users set weekly workout goals and are rewarded with a butterfly when the goal is met. Users can also enter workout information manually if the sensor made a mistake, they forgot to wear it, or they did an activity that the sensor does not detect.

This background display proved motivational, said Consolvo, who is a researcher at Intel Research Seattle. She ran a field study from November 2007 through January 2008, with 28 participants. The results were presented at the UbiComp conference in Seoul in September. In her study, participants using the UbiFit background screen maintained their workout activity through the holiday months, while people using a version of UbiFit without the display let their workouts slide.

"The background display was definitely one of the biggest wins of our study," Consolvo said.

The design of UbiGreen was inspired by UbiFit, Landay said. The project was presented Nov. 18 at the Behavior, Energy and Climate Change conference in Sacramento, Calif.

UbiGreen automatically logs a trip that involves walking, running or biking using accelerometer data, and uses cell phone tower signals to determine if someone is riding in a vehicle. A quick survey pops up at the end of the trip and the user chooses car, carpool, bus or train. Eventually, the application could be programmed to glean almost all this information just from the accelerometer, Landay said, because the movements of cars, buses and trains are very different from each other.

UbiGreen displays a tree on the cell phone's background that grows leaves, flowers, then fruit as the user makes green choices. Icons light up when a choice saves money, incorporates exercise, or allows the user to multi-task. A green bar and number also display how many pounds of carbon dioxide each trip saves compared to a car ride.

UbiFit and UbiGreen could be released to the public within the next year or two, Landay said, especially as phones with built-in accelerometers become more common.

"The last 30 years of personal computing has been in support of people sitting at their desks," Landay said, "but the next wave will be these little computers that are with us all the time and have an understanding of our context in the physical world."

Intel helped fund these projects. Other researchers involved in UbiFit and UbiGreen are Jon Froehlich, UW computer science and engineering doctoral student, Pedja Klasjna, doctoral student in UW's Information School, Jennifer Mankoff, computer science associate professor at Carnegie Mellon University, Tawanna Dillahunt, Carnegie Mellon University human-computer interaction doctoral student, and Beverly Harrison, researcher at Intel Research Seattle.

For more information, contact Landay at 206-685-9139 or landay@cs.washington.edu, or Consolvo at 206-545-2529 orsunny.consolvo@intel.com.

Learn more about UbiFit at http://dub.washington.edu/projects/ubifit and UbiGreen at http://dub.washington.edu/projects/ubigreen.

Pictures available at http://uwnews.org/article.asp?articleID=45276.

Rachel Tompa | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>