Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Track Your Fitness, Environmental Impact with New Cell Phone Applications

21.11.2008
Researchers at the University of Washington and Intel have created two new cell phone applications, dubbed UbiFit and UbiGreen, to automatically track workouts and green transportation. The programs display motivational pictures on the phone's background screen that change the more the user works out or uses eco-friendly means of transportation.

Planning on gobbling a few extra treats this holiday season? Soon, your cell phone may be able to help you maintain your exercise routine and keep the pounds off over winter months, without your having to lift a finger to keep track.

Researchers at the University of Washington and Intel have created two new cell phone applications, dubbed UbiFit and UbiGreen, to automatically track workouts and green transportation. The programs display motivational pictures on the phone's background screen that change the more the user works out or uses eco-friendly means of transportation.

The applications are designed to change people's behavior for the better, said Sunny Consolvo, a recently graduated UW Information School doctoral student and one of UbiFit's creators. In a three-month field experiment, people using UbiFit with the background display kept up their workout routines over the winter holidays, a period when people typically slack off on exercise, while people without the display let their regimen slide.

UbiFit and UbiGreen are part of a larger project at the UW to use mobile computing in everyday activities and long-term goals such as fitness, said project leader James Landay, UW computer science and engineering associate professor. "You can't get fit in a short period of time in one place," he said. "It happens long-term, in many different places and ways."

Current versions of UbiFit and UbiGreen use an external sensing device (the Intel Mobile Sensing Platform) clipped to the user's waist. The device includes an accelerometer to sense the user's movement. The programs could run on phones with built-in accelerometers, such as the iPhone and the new Android G1, with no need for external equipment, Landay said. UbiGreen also relies on changing cell phone tower signals to determine whether a person is taking a trip.

The sensing device determines what the user is doing based on how it gets jiggled around, Landay said -- the localized motion at your waist will be different if you're walking, jogging, or sitting in a car. The sensing device sends signals three times per second via Bluetooth to the cell phone, where the application averages these rapid signals and translates them into, for example, a 20-minute jog or a drive to work.

UbiFit displays an empty lawn at the beginning of the week, and flowers grow as the user works out during the week. Different kinds of workouts yield different colored flowers. Users set weekly workout goals and are rewarded with a butterfly when the goal is met. Users can also enter workout information manually if the sensor made a mistake, they forgot to wear it, or they did an activity that the sensor does not detect.

This background display proved motivational, said Consolvo, who is a researcher at Intel Research Seattle. She ran a field study from November 2007 through January 2008, with 28 participants. The results were presented at the UbiComp conference in Seoul in September. In her study, participants using the UbiFit background screen maintained their workout activity through the holiday months, while people using a version of UbiFit without the display let their workouts slide.

"The background display was definitely one of the biggest wins of our study," Consolvo said.

The design of UbiGreen was inspired by UbiFit, Landay said. The project was presented Nov. 18 at the Behavior, Energy and Climate Change conference in Sacramento, Calif.

UbiGreen automatically logs a trip that involves walking, running or biking using accelerometer data, and uses cell phone tower signals to determine if someone is riding in a vehicle. A quick survey pops up at the end of the trip and the user chooses car, carpool, bus or train. Eventually, the application could be programmed to glean almost all this information just from the accelerometer, Landay said, because the movements of cars, buses and trains are very different from each other.

UbiGreen displays a tree on the cell phone's background that grows leaves, flowers, then fruit as the user makes green choices. Icons light up when a choice saves money, incorporates exercise, or allows the user to multi-task. A green bar and number also display how many pounds of carbon dioxide each trip saves compared to a car ride.

UbiFit and UbiGreen could be released to the public within the next year or two, Landay said, especially as phones with built-in accelerometers become more common.

"The last 30 years of personal computing has been in support of people sitting at their desks," Landay said, "but the next wave will be these little computers that are with us all the time and have an understanding of our context in the physical world."

Intel helped fund these projects. Other researchers involved in UbiFit and UbiGreen are Jon Froehlich, UW computer science and engineering doctoral student, Pedja Klasjna, doctoral student in UW's Information School, Jennifer Mankoff, computer science associate professor at Carnegie Mellon University, Tawanna Dillahunt, Carnegie Mellon University human-computer interaction doctoral student, and Beverly Harrison, researcher at Intel Research Seattle.

For more information, contact Landay at 206-685-9139 or landay@cs.washington.edu, or Consolvo at 206-545-2529 orsunny.consolvo@intel.com.

Learn more about UbiFit at http://dub.washington.edu/projects/ubifit and UbiGreen at http://dub.washington.edu/projects/ubigreen.

Pictures available at http://uwnews.org/article.asp?articleID=45276.

Rachel Tompa | Newswise Science News
Further information:
http://www.washington.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>