Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From touchpad to thought-pad?

28.10.2010
NIH-funded research shows that digital images can be manipulated with the mind

Move over, touchpad screens: New research funded in part by the National Institutes of Health shows that it is possible to manipulate complex visual images on a computer screen using only the mind.

The study, published in Nature, found that when research subjects had their brains connected to a computer displaying two merged images, they could force the computer to display one of the images and discard the other. The signals transmitted from each subject's brain to the computer were derived from just a handful of brain cells.

"The subjects were able to use their thoughts to override the images they saw on the computer screen," said the study's lead author, Itzhak Fried, M.D., Ph.D., a professor of neurosurgery at the University of California, Los Angeles. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH), both part of NIH.

The study reflects progress in the development of brain-computer interfaces (BCIs), devices that allow people to control computers or other devices with their thoughts. BCIs hold promise for helping paralyzed individuals to communicate or control prosthetic limbs. But in this study, BCI technology was used mostly as a tool to understand how the brain processes information, and especially to understand how thoughts and decisions are shaped by the collective activity of single brain cells.

"This is a novel and elegant use of a brain-computer interface to explore how the brain directs attention and makes choices," said Debra Babcock, M.D., Ph.D., a program director at NINDS.

The study involved 12 people with epilepsy who had fine wires implanted in their brains to record seizure activity. Recordings like these are routinely used to locate areas of the brain that are responsible for seizures. In this study, the wires were inserted in the medial temporal lobe, a brain region important for memory and the ability to recognize complex images, including faces.

While the recordings from their brains were transmitted to a computer, the research subjects viewed two pictures superimposed on a computer screen, each picture showing a familiar object, place, animal or person. They were told to select one image as a target and to focus their thoughts on it until that image was fully visible and the other image faded away. The monitor was updated every one-tenth of one second based on the input from the brain recordings.

As a group, the subjects attempted this game nearly 900 times in total, and were able to force the monitor to display the target image in 70 percent of these attempts. Subjects tended to learn the task very quickly, and often were successful on the first try.

The brain recordings and the input to the computer were based on the activity of just four cells in the temporal lobe. Prior research has shown that individual cells in this part of the brain respond preferentially – firing impulses at a higher rate – to specific images. For instance, one cell in the temporal lobe might respond to seeing a picture of Marilyn Monroe, while another might respond to Michael Jackson. Both were among the celebrity faces used in the study.

Dr. Fried's team first identified four brain cells with preferences for celebrities or familiar objects, animals or landmarks, and then targeted the recording electrodes to those cells. The team found that when subjects played the image-switching game, their success appeared to depend on their ability to power up cells that preferred the target image and suppress cells that preferred the non-target image.

"The remarkable aspects of this study are that we can concentrate our attention to make a choice by modulating so few brain cells and that we can learn to control those cells very quickly," said Dr. Babcock.

Prior studies on BCIs have shown that it is possible to perform other tasks, such as controlling a computer cursor, with just a few brain cells. However, the task here was more complex and might have been expected to involve legions of cells in diverse brain areas needed for vision, attention, memory and decision-making.

Reference: Cerf M et al. "On-line, voluntary control of human temporal lobe neurons," Nature, October 28, 2010.

NINDS (www.ninds.nih.gov) is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

The mission of the NIMH (www.nimh.nih.gov) is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure.

NIH — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Daniel Stimson | EurekAlert!
Further information:
http://www.nih.gov

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>