Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From touchpad to thought-pad?

28.10.2010
NIH-funded research shows that digital images can be manipulated with the mind

Move over, touchpad screens: New research funded in part by the National Institutes of Health shows that it is possible to manipulate complex visual images on a computer screen using only the mind.

The study, published in Nature, found that when research subjects had their brains connected to a computer displaying two merged images, they could force the computer to display one of the images and discard the other. The signals transmitted from each subject's brain to the computer were derived from just a handful of brain cells.

"The subjects were able to use their thoughts to override the images they saw on the computer screen," said the study's lead author, Itzhak Fried, M.D., Ph.D., a professor of neurosurgery at the University of California, Los Angeles. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH), both part of NIH.

The study reflects progress in the development of brain-computer interfaces (BCIs), devices that allow people to control computers or other devices with their thoughts. BCIs hold promise for helping paralyzed individuals to communicate or control prosthetic limbs. But in this study, BCI technology was used mostly as a tool to understand how the brain processes information, and especially to understand how thoughts and decisions are shaped by the collective activity of single brain cells.

"This is a novel and elegant use of a brain-computer interface to explore how the brain directs attention and makes choices," said Debra Babcock, M.D., Ph.D., a program director at NINDS.

The study involved 12 people with epilepsy who had fine wires implanted in their brains to record seizure activity. Recordings like these are routinely used to locate areas of the brain that are responsible for seizures. In this study, the wires were inserted in the medial temporal lobe, a brain region important for memory and the ability to recognize complex images, including faces.

While the recordings from their brains were transmitted to a computer, the research subjects viewed two pictures superimposed on a computer screen, each picture showing a familiar object, place, animal or person. They were told to select one image as a target and to focus their thoughts on it until that image was fully visible and the other image faded away. The monitor was updated every one-tenth of one second based on the input from the brain recordings.

As a group, the subjects attempted this game nearly 900 times in total, and were able to force the monitor to display the target image in 70 percent of these attempts. Subjects tended to learn the task very quickly, and often were successful on the first try.

The brain recordings and the input to the computer were based on the activity of just four cells in the temporal lobe. Prior research has shown that individual cells in this part of the brain respond preferentially – firing impulses at a higher rate – to specific images. For instance, one cell in the temporal lobe might respond to seeing a picture of Marilyn Monroe, while another might respond to Michael Jackson. Both were among the celebrity faces used in the study.

Dr. Fried's team first identified four brain cells with preferences for celebrities or familiar objects, animals or landmarks, and then targeted the recording electrodes to those cells. The team found that when subjects played the image-switching game, their success appeared to depend on their ability to power up cells that preferred the target image and suppress cells that preferred the non-target image.

"The remarkable aspects of this study are that we can concentrate our attention to make a choice by modulating so few brain cells and that we can learn to control those cells very quickly," said Dr. Babcock.

Prior studies on BCIs have shown that it is possible to perform other tasks, such as controlling a computer cursor, with just a few brain cells. However, the task here was more complex and might have been expected to involve legions of cells in diverse brain areas needed for vision, attention, memory and decision-making.

Reference: Cerf M et al. "On-line, voluntary control of human temporal lobe neurons," Nature, October 28, 2010.

NINDS (www.ninds.nih.gov) is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

The mission of the NIMH (www.nimh.nih.gov) is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure.

NIH — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov.

Daniel Stimson | EurekAlert!
Further information:
http://www.nih.gov

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Researchers release the brakes on the immune system

18.10.2017 | Health and Medicine

Separating methane and CO2 will become more efficient

18.10.2017 | Life Sciences

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>