Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


From touchpad to thought-pad?

NIH-funded research shows that digital images can be manipulated with the mind

Move over, touchpad screens: New research funded in part by the National Institutes of Health shows that it is possible to manipulate complex visual images on a computer screen using only the mind.

The study, published in Nature, found that when research subjects had their brains connected to a computer displaying two merged images, they could force the computer to display one of the images and discard the other. The signals transmitted from each subject's brain to the computer were derived from just a handful of brain cells.

"The subjects were able to use their thoughts to override the images they saw on the computer screen," said the study's lead author, Itzhak Fried, M.D., Ph.D., a professor of neurosurgery at the University of California, Los Angeles. The study was funded in part by the National Institute of Neurological Disorders and Stroke (NINDS), and the National Institute of Mental Health (NIMH), both part of NIH.

The study reflects progress in the development of brain-computer interfaces (BCIs), devices that allow people to control computers or other devices with their thoughts. BCIs hold promise for helping paralyzed individuals to communicate or control prosthetic limbs. But in this study, BCI technology was used mostly as a tool to understand how the brain processes information, and especially to understand how thoughts and decisions are shaped by the collective activity of single brain cells.

"This is a novel and elegant use of a brain-computer interface to explore how the brain directs attention and makes choices," said Debra Babcock, M.D., Ph.D., a program director at NINDS.

The study involved 12 people with epilepsy who had fine wires implanted in their brains to record seizure activity. Recordings like these are routinely used to locate areas of the brain that are responsible for seizures. In this study, the wires were inserted in the medial temporal lobe, a brain region important for memory and the ability to recognize complex images, including faces.

While the recordings from their brains were transmitted to a computer, the research subjects viewed two pictures superimposed on a computer screen, each picture showing a familiar object, place, animal or person. They were told to select one image as a target and to focus their thoughts on it until that image was fully visible and the other image faded away. The monitor was updated every one-tenth of one second based on the input from the brain recordings.

As a group, the subjects attempted this game nearly 900 times in total, and were able to force the monitor to display the target image in 70 percent of these attempts. Subjects tended to learn the task very quickly, and often were successful on the first try.

The brain recordings and the input to the computer were based on the activity of just four cells in the temporal lobe. Prior research has shown that individual cells in this part of the brain respond preferentially – firing impulses at a higher rate – to specific images. For instance, one cell in the temporal lobe might respond to seeing a picture of Marilyn Monroe, while another might respond to Michael Jackson. Both were among the celebrity faces used in the study.

Dr. Fried's team first identified four brain cells with preferences for celebrities or familiar objects, animals or landmarks, and then targeted the recording electrodes to those cells. The team found that when subjects played the image-switching game, their success appeared to depend on their ability to power up cells that preferred the target image and suppress cells that preferred the non-target image.

"The remarkable aspects of this study are that we can concentrate our attention to make a choice by modulating so few brain cells and that we can learn to control those cells very quickly," said Dr. Babcock.

Prior studies on BCIs have shown that it is possible to perform other tasks, such as controlling a computer cursor, with just a few brain cells. However, the task here was more complex and might have been expected to involve legions of cells in diverse brain areas needed for vision, attention, memory and decision-making.

Reference: Cerf M et al. "On-line, voluntary control of human temporal lobe neurons," Nature, October 28, 2010.

NINDS ( is the nation's leading funder of research on the brain and nervous system. The NINDS mission is to reduce the burden of neurological disease – a burden borne by every age group, by every segment of society, by people all over the world.

The mission of the NIMH ( is to transform the understanding and treatment of mental illnesses through basic and clinical research, paving the way for prevention, recovery and cure.

NIH — The Nation's Medical Research Agency — includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. It is the primary federal agency for conducting and supporting basic, clinical and translational medical research, and it investigates the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit

Daniel Stimson | EurekAlert!
Further information:

More articles from Information Technology:

nachricht Fraunhofer FIT joins Facebook's Telecom Infra Project
25.10.2016 | Fraunhofer-Institut für Angewandte Informationstechnik FIT

nachricht Stanford researchers create new special-purpose computer that may someday save us billions
21.10.2016 | Stanford University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>