Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan Completes Acceptance Testing

12.06.2013
Oak Ridge National Laboratory’s Titan supercomputer has completed rigorous acceptance testing to ensure the functionality, performance and stability of the machine, one of the world’s most powerful supercomputing systems for open science.

The Department of Energy machine, the first to combine different types of processing units to maximize performance at such a large scale, ranked as the fastest supercomputer in the world in the November 2012 list published at http://www.top500.org/. Titan, a Cray XK7 supercomputer (Nasdaq: CRAY), is capable of more than 27,000 trillion calculations each second—or 27 petaflops.

The combination of 18,688 NVIDIA Tesla graphic processing units (GPUs) with 299,008 AMD Opteron CPU cores enables Titan to maximize its energy efficiency; the machine delivers 10 times the performance of its predecessor while using only marginally more electricity. The Cray XK7 system consists of 200 cabinets covering an area the size of a basketball court and boasts 710 terabytes of memory, or 38 gigabytes per node, and Cray’s Gemini interconnect.

“The real measure of a system like Titan is how it handles working scientific applications and critical scientific problems,” said Buddy Bland, project director at the Oak Ridge Leadership Computing Facility. “The purpose of Titan’s incredible power is to advance science, and the system has already shown its abilities on a range of important applications and has validated ORNL’s decision to rely on GPU accelerators.”

For instance, the high-performance molecular dynamics application LAMMPS has seen more than a sevenfold speedup on Titan over its performance on the comparable CPU-only system. Two other codes—Denovo, which models neutron transport in nuclear reactors, and WL-LSMS, which simulates the statistical mechanics of magnetic materials—saw nearly a fourfold increase.

“We are very pleased with Titan,” said Bland. “The system was delivered on schedule and within budget, and it has clearly shown its value as a research tool. We look forward to Titan delivering important scientific results for years to come.”

Researchers can apply for access to Titan’s unique capabilities through one of three programs: the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, the DOE Office of Advanced Scientific Computing Research Leadership Computing Challenge (ALCC), or the OLCF Director’s Discretion (DD) program.

INCITE allocations are available to researchers worldwide, regardless of funding source. The program is designed for research problems that demand petascale computing. Applications will be accepted through June 28. For more information, go to https://proposals.doeleadershipcomputing.org/allocations/calls/incite2014.

The ALCC program allocates computational resources at the OLCF for special research of interest to the Department of Energy with an emphasis on high-risk, high-payoff simulations in areas directly related to the department’s energy mission. Find more information at http://science.energy.gov/ascr/facilities/alcc/.

DD allocations are available to projects interested in scaling their codes to take full advantage of Titan. Applications are accepted year round via http://www.olcf.ornl.gov/support/getting-started/olcf-director-discretion-project-application/.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov. - By Leo Williams

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:
Twitter - http://twitter.com/oakridgelabnews
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | Newswise
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>