Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Titan Completes Acceptance Testing

Oak Ridge National Laboratory’s Titan supercomputer has completed rigorous acceptance testing to ensure the functionality, performance and stability of the machine, one of the world’s most powerful supercomputing systems for open science.

The Department of Energy machine, the first to combine different types of processing units to maximize performance at such a large scale, ranked as the fastest supercomputer in the world in the November 2012 list published at Titan, a Cray XK7 supercomputer (Nasdaq: CRAY), is capable of more than 27,000 trillion calculations each second—or 27 petaflops.

The combination of 18,688 NVIDIA Tesla graphic processing units (GPUs) with 299,008 AMD Opteron CPU cores enables Titan to maximize its energy efficiency; the machine delivers 10 times the performance of its predecessor while using only marginally more electricity. The Cray XK7 system consists of 200 cabinets covering an area the size of a basketball court and boasts 710 terabytes of memory, or 38 gigabytes per node, and Cray’s Gemini interconnect.

“The real measure of a system like Titan is how it handles working scientific applications and critical scientific problems,” said Buddy Bland, project director at the Oak Ridge Leadership Computing Facility. “The purpose of Titan’s incredible power is to advance science, and the system has already shown its abilities on a range of important applications and has validated ORNL’s decision to rely on GPU accelerators.”

For instance, the high-performance molecular dynamics application LAMMPS has seen more than a sevenfold speedup on Titan over its performance on the comparable CPU-only system. Two other codes—Denovo, which models neutron transport in nuclear reactors, and WL-LSMS, which simulates the statistical mechanics of magnetic materials—saw nearly a fourfold increase.

“We are very pleased with Titan,” said Bland. “The system was delivered on schedule and within budget, and it has clearly shown its value as a research tool. We look forward to Titan delivering important scientific results for years to come.”

Researchers can apply for access to Titan’s unique capabilities through one of three programs: the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, the DOE Office of Advanced Scientific Computing Research Leadership Computing Challenge (ALCC), or the OLCF Director’s Discretion (DD) program.

INCITE allocations are available to researchers worldwide, regardless of funding source. The program is designed for research problems that demand petascale computing. Applications will be accepted through June 28. For more information, go to

The ALCC program allocates computational resources at the OLCF for special research of interest to the Department of Energy with an emphasis on high-risk, high-payoff simulations in areas directly related to the department’s energy mission. Find more information at

DD allocations are available to projects interested in scaling their codes to take full advantage of Titan. Applications are accepted year round via

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit - By Leo Williams

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at Additional information about ORNL is available at the sites below:
Twitter -
RSS Feeds -
Flickr -
YouTube -
LinkedIn -
Facebook -

Morgan McCorkle | Newswise
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>