Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Titan Completes Acceptance Testing

12.06.2013
Oak Ridge National Laboratory’s Titan supercomputer has completed rigorous acceptance testing to ensure the functionality, performance and stability of the machine, one of the world’s most powerful supercomputing systems for open science.

The Department of Energy machine, the first to combine different types of processing units to maximize performance at such a large scale, ranked as the fastest supercomputer in the world in the November 2012 list published at http://www.top500.org/. Titan, a Cray XK7 supercomputer (Nasdaq: CRAY), is capable of more than 27,000 trillion calculations each second—or 27 petaflops.

The combination of 18,688 NVIDIA Tesla graphic processing units (GPUs) with 299,008 AMD Opteron CPU cores enables Titan to maximize its energy efficiency; the machine delivers 10 times the performance of its predecessor while using only marginally more electricity. The Cray XK7 system consists of 200 cabinets covering an area the size of a basketball court and boasts 710 terabytes of memory, or 38 gigabytes per node, and Cray’s Gemini interconnect.

“The real measure of a system like Titan is how it handles working scientific applications and critical scientific problems,” said Buddy Bland, project director at the Oak Ridge Leadership Computing Facility. “The purpose of Titan’s incredible power is to advance science, and the system has already shown its abilities on a range of important applications and has validated ORNL’s decision to rely on GPU accelerators.”

For instance, the high-performance molecular dynamics application LAMMPS has seen more than a sevenfold speedup on Titan over its performance on the comparable CPU-only system. Two other codes—Denovo, which models neutron transport in nuclear reactors, and WL-LSMS, which simulates the statistical mechanics of magnetic materials—saw nearly a fourfold increase.

“We are very pleased with Titan,” said Bland. “The system was delivered on schedule and within budget, and it has clearly shown its value as a research tool. We look forward to Titan delivering important scientific results for years to come.”

Researchers can apply for access to Titan’s unique capabilities through one of three programs: the Innovative and Novel Computational Impact on Theory and Experiment (INCITE) program, the DOE Office of Advanced Scientific Computing Research Leadership Computing Challenge (ALCC), or the OLCF Director’s Discretion (DD) program.

INCITE allocations are available to researchers worldwide, regardless of funding source. The program is designed for research problems that demand petascale computing. Applications will be accepted through June 28. For more information, go to https://proposals.doeleadershipcomputing.org/allocations/calls/incite2014.

The ALCC program allocates computational resources at the OLCF for special research of interest to the Department of Energy with an emphasis on high-risk, high-payoff simulations in areas directly related to the department’s energy mission. Find more information at http://science.energy.gov/ascr/facilities/alcc/.

DD allocations are available to projects interested in scaling their codes to take full advantage of Titan. Applications are accepted year round via http://www.olcf.ornl.gov/support/getting-started/olcf-director-discretion-project-application/.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov. - By Leo Williams

NOTE TO EDITORS: You may read other press releases from Oak Ridge National Laboratory or learn more about the lab at http://www.ornl.gov/news. Additional information about ORNL is available at the sites below:
Twitter - http://twitter.com/oakridgelabnews
RSS Feeds - http://www.ornl.gov/ornlhome/rss_feeds.shtml
Flickr - http://www.flickr.com/photos/oakridgelab
YouTube - http://www.youtube.com/user/OakRidgeNationalLab
LinkedIn - http://www.linkedin.com/companies/oak-ridge-national-laboratory
Facebook - http://www.facebook.com/Oak.Ridge.National.Laboratory

Morgan McCorkle | Newswise
Further information:
http://www.ornl.gov

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>