Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time recording up one's sleeve

02.01.2012
Optimized operations are essential to globally competitive companies. Until now, inspectors have timed procedures, usually manually, in order to organize manual assembly operations efficiently – a method prone to error. A new system records times automatically and cuts costs for companies.

Handling tools, assembling , inserting, joining and bolting parts, painting components, operating equipment – innumerable procedures must be executed before a product can be packaged and shipped. How much time do employees need for individual procedures? How long does manual assembly take?

Industrial manufacturers have to analyze and optimize their employees’ operations continually in order to remain competitive. They must record the times of operations if they wish to analyze the individual procedures. This enables them to identify long handling distances, impractically located components, overly frequent tool changes or irregular and superfluous movements, which waste time and make production processes inefficient.

Until now, every individual movement has usually been timed by someone with a stopwatch or with digital time boards manned by employees. This approach is not really objective, however. It is replete with errors and disadvantageous for everyone involved: The stress factor for employees is extremely high and they might not execute their jobs at their usual speed. For companies, this requires quite a lot of work from staff and thus incurs high costs. There is therefore great need for more precise, automated and cost effective solutions. Contracted by the engineering firm DR. GRUENDLER® in Magdeburg, researchers at the Fraunhofer Institute for Factory Operation and Automation IFF have developed such a system.

Three matchbox-sized sensors integrated in a sleeve record hand and arm movements precisely and measure the start and end of individual actions, e.g. reaching, grasping, setting up, joining, checking or releasing. The interlinked sensor modules are positioned on the upper and lower arm and the hand. Employees merely have to put on the two sleeves. They are snug like a second skin yet comfortable and do not impede the wearer. “The present stopwatch method only allows a process organizer to time five individuals simultaneously, depending on the situation. Our solution makes it possible to record time simultaneously, even at several workplaces, without requiring additional labor. The system’s greater precision and objectivity is crucial,” says Martin Woitag, research manager at the Fraunhofer IFF. Woitag and his team relied on inertial sensors for their solution. They measure the acceleration and angular velocities of arms and hands in the X, Y and Z axes. Unlike other motion tracking systems, such as GPS, the inertial measurement system functions without any other infrastructure. The inertial sensors independently detect objects’ positions in space. “What is more, our solution doesn’t require complex calibration. A tool that teaches in the measuring points directly at the assembly workplace one time is all that is needed,” according to Woitag. A PC application completes the system. The software calculates and reconstructs the motion sequences based on the sensor data. It breaks processes down into motion segments and ascertains the related times.

At present, the sleeves can be used for assembly jobs at sitting workplaces in logistics and manufacturing. In the next stage, the researchers in Magdeburg intend to configure the system to also analyze assembly operations during which workers stand or move around. They additionally plan to use the sensors to detect posture and thus analyze workplace ergonomics.

Martin Woitag | Fraunhofer Research News
Further information:
http://www.fraunhofer.de/en/press/research-news/2012/january/time-recording.html

More articles from Information Technology:

nachricht Equipping form with function
23.06.2017 | Institute of Science and Technology Austria

nachricht Can we see monkeys from space? Emerging technologies to map biodiversity
23.06.2017 | Forschungsverbund Berlin e.V.

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>