Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Time is money: SIM time network has far-reaching benefits

01.06.2010
Clocks in the Americas and the Caribbean Islands are now ticking in unison thanks to the work of the Sistema Interamericano de Metrologia (SIM), a regional metrology organization that works to promote accurate measurements throughout the Americas. Since 2005, SIM has been building a time network, designed by the U.S. National Institute of Standards and Technology (NIST), that now extends to 16 nations.

The SIM Time Network allows each of these nations to continuously compare their clocks, with the time differences between the nations displayed on a SIM Web site. These time differences generally are very small, often less than 100 nanoseconds (100 billionths of a second).

It has been said that the world's most commonly asked question is "What time is it?" Nations that maintain accurate time standards benefit all of their residents. Accurate time and synchronization are crucial for much or our modern technology, enabling the efficient operation of telecommunications, computer networks, electric power distribution, and many other parts of the technology infrastructure that we use every day.

The SIM Time Network began in 2005 by adopting technology developed at NIST to more easily distribute accurate time and frequency information to remote locations. NIST developed a self-contained, user-friendly system about the size of a microwave oven that can be quickly installed in any laboratory. One or more atomic clocks then are connected to the automated system, which uses the Internet and the Global Positioning System (GPS) to compare the clocks' time with clocks at other laboratories on the network and report the results to the central servers of the SIM Time Network.

The SIM Time Network initially compared the national time standards among Canada, Mexico and the United States. The network has been rapidly expanding, and now includes time standards in Argentina, Brazil, Chile, Colombia, Costa Rica, Jamaica, Panama, Paraguay, Peru, St. Lucia, Uruguay, Guatemala, and Trinidad and Tobago as well. The time from each nation is measured every second, and the measurements are transferred across the network every 10 minutes and displayed on the Internet. The results are publicly available so that anyone can see in near real-time comparisons between the time standards for all the participating countries.

Michael Lombardi, the NIST scientist who designed the network, says that it has helped several laboratories gain status as the official timekeepers for their respective countries, and several of the SIM Time Network participants also have begun participating for the first time in the generation of official international time—Coordinated Universal Time (UTC)—a sort of weighted average of time kept by official clocks maintained by the International Bureau of Weights and Measures in France (French acronym BIPM).

The SIM Time Network has led to increased cooperation and scientific collaboration among its members. Mauricio Lopez of the Centro Nacional de Metrología (CENAM) of Mexico, who chairs the SIM Time and Frequency Working group, and his staff at CENAM led the development of a project that combines the time kept by all of the clocks in the network and produces an average timescale, called SIM Time (SIMT). The laboratories in the network can then compare their clocks to each other and to SIMT.

To see the SIM Time Network in action, visit http://tf.nist.gov/sim/index.htm (home page) and http://132.163.4.82/scripts/sim_rx_grid.exe (current results display).

James Burrus | EurekAlert!
Further information:
http://www.nist.gov

More articles from Information Technology:

nachricht Smart Computers
21.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>