Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Future Of Ultrascale Computing Under Study

08.09.2014

Some two hundred scientists from more than 40 countries are researching what the next generation of ultrascale computing systems will be like. The study is being carried out under the auspices of NESUS, one of the largest European research networks of this type coordinated by Universidad Carlos III de Madrid (UC3M).

Ultrascale systems combine the advantages of distributed and parallel computing systems. The former is a type of computing in which many tasks are executed at the same time coordinately to solve one problem, based on the principle that a big problem can be divided into many smaller ones that are simultaneously solved.


The latter system, in both grid and cloud computing, uses a large number of computers organized into clusters in a distributed infrastructure, and can execute millions of tasks at the same time usually working on independent problems and big data.

The scientific objective of NESUS is to study the challenges presented by the next generation of ultrascale computing systems. These systems, which will be characterized by their large size and great complexity, present significant challenges, from their construction to their exploitation and use.

“We try to analyze all the challenges there are and see how they can be studied holistically and integrated, to be able to provide a more sustainable system,” noted Jesús Carretero, full professor in the UC3M Department of Computer Science and coordinator of the European Union’s important COST Action.

The project began a few months ago with 29 European countries, but at present consists of 39 European countries and six countries from other continents. “It is the largest COST Action ever, which shows the interest that exists for it,” Carretero pointed out. It now involves nearly 200 scientists, almost 40% of whom are young researchers, because one essential goal of these Actions is to promote and create an ecosystem of scientists who can work on these matters in the European Union in the future. 

The goal in scalable and sustainable technology is for us to have large parallel supercomputers, now termed “exascale” computers, and to have large data centers with hundreds of thousands of computers coordinating with distributed memory systems by the year 2020. “Ultimately, the idea is to have both architectures converge to solve problems in what we call ultrascale,” said Carretero. The applications of these systems and the benefits they can yield for society are enormous, according to the researchers, who note that this type of computing will help conduct studies about genomics, new materials, simulations of fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior.

Large systems, important challenges

The challenges that this type of computing poses affect aspects such as scalability, the programming models used, resilience to failures, energy management, the handling of large volume of data, etc. “We try to find the way that all solutions that are proposed can be transmitted to user applications with the minimum possible redesign and reprogramming effort,” Carretero remarked.

The project started last March and the researchers have already held two important meetings: one for work groups in Madrid in July and another in Oporto (Portugal) at the end of August, attended by representatives of the research groups that participate as well as Project Officers from the EU’s H2020 program. By reducing duplication of work and providing a more comprehensive vision of all the researchers, this COST Action hopes to increase the value of these groups at the European level, promoting European leadership in this area of knowledge, as well as enhancing its impact on science, the economy and society.

This Action, which concludes in 2018, aims to produce a catalogue of open source applications that are being developed by the scientists and which will serve to demonstrate new ultrascale systems and take on their main challenges. In this way, anyone will be able to use these applications to test them in their systems and demonstrate their level of sustainability.

Further information: http://www.nesus.eu

Javier Alonso | Eurek Alert!
Further information:
http://portal.uc3m.es/portal/page/portal/actualidad_cientifica/noticias/computing_nesus

Further reports about: Computing Ultimately affect analyze countries interest problems size smaller volume

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine

23.05.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>