Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The Future Of Ultrascale Computing Under Study


Some two hundred scientists from more than 40 countries are researching what the next generation of ultrascale computing systems will be like. The study is being carried out under the auspices of NESUS, one of the largest European research networks of this type coordinated by Universidad Carlos III de Madrid (UC3M).

Ultrascale systems combine the advantages of distributed and parallel computing systems. The former is a type of computing in which many tasks are executed at the same time coordinately to solve one problem, based on the principle that a big problem can be divided into many smaller ones that are simultaneously solved.

The latter system, in both grid and cloud computing, uses a large number of computers organized into clusters in a distributed infrastructure, and can execute millions of tasks at the same time usually working on independent problems and big data.

The scientific objective of NESUS is to study the challenges presented by the next generation of ultrascale computing systems. These systems, which will be characterized by their large size and great complexity, present significant challenges, from their construction to their exploitation and use.

“We try to analyze all the challenges there are and see how they can be studied holistically and integrated, to be able to provide a more sustainable system,” noted Jesús Carretero, full professor in the UC3M Department of Computer Science and coordinator of the European Union’s important COST Action.

The project began a few months ago with 29 European countries, but at present consists of 39 European countries and six countries from other continents. “It is the largest COST Action ever, which shows the interest that exists for it,” Carretero pointed out. It now involves nearly 200 scientists, almost 40% of whom are young researchers, because one essential goal of these Actions is to promote and create an ecosystem of scientists who can work on these matters in the European Union in the future. 

The goal in scalable and sustainable technology is for us to have large parallel supercomputers, now termed “exascale” computers, and to have large data centers with hundreds of thousands of computers coordinating with distributed memory systems by the year 2020. “Ultimately, the idea is to have both architectures converge to solve problems in what we call ultrascale,” said Carretero. The applications of these systems and the benefits they can yield for society are enormous, according to the researchers, who note that this type of computing will help conduct studies about genomics, new materials, simulations of fluid dynamics used for atmospheric analysis and weather forecasts, and even the human brain and its behavior.

Large systems, important challenges

The challenges that this type of computing poses affect aspects such as scalability, the programming models used, resilience to failures, energy management, the handling of large volume of data, etc. “We try to find the way that all solutions that are proposed can be transmitted to user applications with the minimum possible redesign and reprogramming effort,” Carretero remarked.

The project started last March and the researchers have already held two important meetings: one for work groups in Madrid in July and another in Oporto (Portugal) at the end of August, attended by representatives of the research groups that participate as well as Project Officers from the EU’s H2020 program. By reducing duplication of work and providing a more comprehensive vision of all the researchers, this COST Action hopes to increase the value of these groups at the European level, promoting European leadership in this area of knowledge, as well as enhancing its impact on science, the economy and society.

This Action, which concludes in 2018, aims to produce a catalogue of open source applications that are being developed by the scientists and which will serve to demonstrate new ultrascale systems and take on their main challenges. In this way, anyone will be able to use these applications to test them in their systems and demonstrate their level of sustainability.

Further information:

Javier Alonso | Eurek Alert!
Further information:

Further reports about: Computing Ultimately affect analyze countries interest problems size smaller volume

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>