Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New TGen technology reduces storage needs and costs for genomic data

07.07.2010
G-SQZ provides scientists with compact format for genomic data processing

A new computer data compression technique called Genomic SQueeZ (G-SQZ), developed by the Translational Genomics Research Institute (TGen), will allow genetic researchers and others to store, analyze and share massive volumes of data in less space and at lower cost.

Created specifically for genomic sequencing data, the encoding method underlying G-SQZ and its software use are described in a paper published today in the journal Bioinformatics.

Tests show that G-SQZ can compress data by as much as 80 percent while maintaining the relative order of the data and allowing for selective content access. This could save researchers and others millions of dollars worldwide.

Plans are to make the G-SQZ program freely available for research and academic use, and to explore commercial opportunities in genomic data storage and processing. TGen has filed a patent application for the G-SQZ technology.

"Data storage and processing costs are becoming a large factor in research planning as high-throughput genomic sequencing studies continue to generate increasing amounts of data. G-SQZ has the potential to save individual institutes hundreds of thousands of dollars per year in storage costs," said Dr. Waibhav Tembe, the paper's lead author and TGen's Senior Computational Scientist, who led the development of the G-SQZ algorithm and its software.

Enormous computing power is required to conduct today's cutting-edge analysis of large volumes of genomic sequencing data. This data is critical in studying the genes that are a part of the 3-billion-letter DNA sequence, the entire genome of one person. Such analysis is enabling researchers to identify those genomic components that either prevent or contribute to diseases, such as cancer, diabetes and Alzheimer's, and to discover treatments tailored to individual patients that can prolong and increase their quality of life.

Today's genomic sequence analysis requires analyzing terabytes of data. Large sequencing centers are planning or have installed petabyte-scale storage. One terabyte is more than 1 trillion bytes of data. One petabyte is 1,000 terabytes.

Benefits shared with other institutes

Dr. Edward Suh, TGen's Chief Information Officer, described G-SQZ as a significant breakthrough in storing and analyzing ever-increasing genomic sequencing data.

"As a non-profit research institute dedicated to advancing science for the public good, we at TGen are proud to be able to share aspects of this technology with other non-profit research institutes, especially in these times of tightened budgets," said Dr. Suh, who also is a Senior Investigator at TGen and co-author of the paper.

James Lowey, TGen's Director of High-Performance Biocomputing and the third co-author of the paper, said reducing storage costs for genomic technology has the potential to eventually lead to a chain reaction of lower health costs for medical institutions and, ultimately, for patients.

"When you reduce the need for storage, you also are reducing your overhead costs, such as electricity and space, and that can save money," Lowey said.

The software is available for download from http://public.tgen.org/sqz.

Technology springs from Next-Gen research

Dr. Tembe's motivation for G-SQZ came from the challenges involved in storing, processing, parsing and transferring enormous Next-Generation Sequencing data, which primarily is stored in plain text formats.

"Generating this data is one thing. It is quite another to store, query and manage it in an efficient manner, minimizing data-analysis bottlenecks and expediting the discovery process," Dr. Tembe said.

The G-SQZ approach is a novel application of Huffman coding of information, an idea first developed in the 1950s, which uses shorter codes for most frequently-occurring pieces of information.

Dr. Tembe's solution is specific to genomic sequencing data. In addition to analyzing the frequency of the ACGT letters that make up DNA, G-SQZ also can encode the annotation information, including the data's quality, as well as erroneous entries, such as unidentified bases.

The indexing system used in G-SQZ allows access at regular intervals, such as every millionth data point, so all the information need not be decoded from the start.

"It's not enough to compress the information. The compressed representation should allow quick retrieval and querying," Dr. Tembe said. "To that end, G-SQZ has been designed as an efficient practical approach, rather than a theoretically optimal compression algorithm."

Even faster advancements on the horizon

Dr. Tembe is moving ahead with improving his current design to accommodate what he calls "parallel computing."

Because G-SQZ compression keeps the data ordered and indexed, the squeezed data can be split into smaller "chunks," allowing multiple computer processors to decode and analyze different parts of the same file simultaneously, he said. For example, if a file is indexed at 1,000 places, it can be fed into a supercomputer, allowing 1,000 processors to analyze the data at the same time, speeding up the results. Analysis tools using parallel programming approaches can take advantage of the G-SQZ encoding format.

"While indexed and compressed representation is ready, the parallel computing functionality is undergoing a testing phase," Dr. Tembe said. "But this is where it is headed. Sequencing hundreds of billions of bases per run is now a reality. The real impact of G-SQZ lies in the storage, transfer and processing of genomic sequencing data, where substantial room for improvement still exists."

About TGen

The Translational Genomics Research Institute (TGen) is a Phoenix, Arizona-based non-profit organization dedicated to conducting groundbreaking research with life changing results. Research at TGen is focused on helping patients with diseases such as cancer, neurological disorders and diabetes. TGen is on the cutting edge of translational research where investigators are able to unravel the genetic components of common and complex diseases. Working with collaborators in the scientific and medical communities, TGen believes it can make a substantial contribution to the efficiency and effectiveness of the translational process. TGen is affiliated with the Van Andel Research Institute in Grand Rapids, Michigan. For more information, visit: www.tgen.org.

Press Contact:
Steve Yozwiak
TGen Senior Science Writer
602-343-8704
syozwiak@tgen.org

Steve Yozwiak | EurekAlert!
Further information:
http://www.tgen.org

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>