Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Testing protocols in Internet of Things by a formal passive technique

17.04.2014

Protocol conformance and performance testing are two branches of testing designed to determine compliance and performance of protocol implementations to their standard.

Dr. CHE Xiaoping and Dr. MAAG Stephane from Laboratory UMR 5157 of French Centre national de la recherché scientifique (CNRS) focus on converging these two kinds of testing in a same formal approach. After several years of innovative research, they eventually created a formal approach to formally specify conformance and performance requirements.


This is distributed testing architecture.

Credit: ©Science China Press

They successfully applied their approach on Extensible Messaging and Presence Protocol (XMPP) and designed a distributed testing framework for XMPP services. Their work, entitled "Testing protocols in Internet of Things by a formal passive technique", is published in SCIENCE CHINA Information Sciences.2014, Vol 57(3).

Extensible Messaging and Presence Protocol (XMPP) has gained more attention as a communication protocol in Internet of Things (IoT), which is a standardized protocol by Internet Engineering Task Force (IETF) and well established in the Internet.

XMPP is available for commonly used programming languages and device platforms. Several studies have investigated the potentialities of applying XMPP in IoT. With the tendency that XMPP is more and more widely used in many aspects of IoT, the problem of formally testing this protocol in a wireless environment is coming out in the wash.

Some works have tried to test the XMPP protocol under different conditions. However, they either simply evaluate the protocol performance or only test several conformance issues. It is worthwhile to note that conformance and performance testing are often associated within the protocol testing process. They are mainly applied to validate or verify the scalability and reliability of the system.

Many benefits can be brought to the testing process if both inherit from the same approach. Besides, very few works have tried to formalize the performance requirements which are mandatory for accurately testing the performance of protocols.

The main objective of this work is then to propose a passive distributed testing approach, for testing both the conformance and the performance of XMPP under IoT environment, based on the formal testing technique. Although some crucial works have been done in similar testing area, they studied runtime verification of properties expressed either in linear-time temporal logic or in timed linear-time temporal logic.

Different from their works focusing on testing functional properties based on formal models, this work concentrates on formally testing functional and nonfunctional properties without formal models. Also note that, this work is absorbed in the performance testing, not in performance evaluation. While performance evaluation of network protocols focuses on the evaluation of its performance, performance testing approaches aim at testing performance requirements that are expected in the protocol standard.

In this work, formalism is defined to specify conformance and performance requirements of XMPP represented as formulas tested on real protocol traces. Horn clauses based syntax is used in the approach to express properties that are checked on extracted traces. And then, since several protocol requirements need to be tested on different wireless entities, a distributed framework is designed for testing the approach on runtime wireless network execution traces.

The approach has been implemented into a distributed framework which provides the possibility to test individual nodes of a complex network environment. The results from testing several properties on large traces have been obtained with success. The subtesters and global monitor in the approach can intuitively reflect the current conformance and performance requirements conditions.

Some researchers suggested that the authors can work on building a standardized performance testing benchmark system for XMPP protocol in future. In that case, the efficiency and processing capacity of the system when massive subtesters are performed through complex network situations would be the crucial point they need to handle.

###

See the article:

Xiaoping CHE, Stephane MAAG. Testing protocols in Internet of Things by a formal passive technique. SCIENCE CHINA Information Sciences, 2014, 57(3): 032101(13)

http://info.scichina.com:8084/sciFe/EN/10.1007/s11432-014-5068-x

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 60 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

http://www.scichina.com/

CHE Xiaoping | Eurek Alert!

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>