Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Terahertz spectroscopy goes nano


Brown University researchers have demonstrated a way to bring a powerful form of spectroscopy -- a technique used to study a wide variety of materials -- into the nano-world.

Laser terahertz emission microscopy (LTEM) is a burgeoning means of characterizing the performance of solar cells, integrated circuits and other systems and materials. Laser pulses illuminating a sample material cause the emission of terahertz radiation, which carries important information about the sample's electrical properties.

Researchers have improved the resolution of terahertz spectroscopy by 1,000 times, making the technique useful at the nanoscale.

Credit: Mittleman Lab / Brown University

"This is a well-known tool for studying essentially any material that absorbs light, but it's never been possible to use it at the nanoscale," said Daniel Mittleman, a professor in Brown's School of Engineering and corresponding author of a paper describing the work. "Our work has improved the resolution of the technique so it can be used to characterize individual nanostructures."

Typically, LTEM measurements are performed with resolution of a few tens of microns, but this new technique enables measurements down to a resolution of 20 nanometers, roughly 1,000 times the resolution previously possible using traditional LTEM techniques.

The research, published in the journal ACS Photonics, was led by Pernille Klarskov, a postdoctoral researcher in Mittleman's lab, with Hyewon Kim and Vicki Colvin from Brown's Department of Chemistry.

For their research, the team adapted for terahertz radiation a technique already used to improve the resolution of infrared microscopes. The technique uses a metal pin, tapered down to a sharpened tip only a few tens of nanometers across, that hovers just above a sample to be imaged.

When the sample is illuminated, a tiny portion of the light is captured directly beneath the tip, which enables imaging resolution roughly equal to the size of the tip. By moving the tip around, it's possible to create ultra-high resolution images of an entire sample.

Klarskov was able to show that the same technique could be used to increase the resolution of terahertz emission as well. For their study, she and her colleagues were able to image an individual gold nanorod with 20-nanometer resolution using terahertz emission.

The researchers believe their new technique could be broadly useful in characterizing the electrical properties of materials in unprecedented detail.

"Terahertz emission has been used to study lots of different materials -- semiconductors, superconductors, wide-band-gap insulators, integrated circuits and others," Mittleman said. "Being able to do this down to the level of individual nanostructures is a big deal."

One example of a research area that could benefit from the technique, Mittleman says, is the characterization of perovskite solar cells, an emerging solar technology studied extensively by Mittleman's colleagues at Brown.

"One of the issues with perovskites is that they're made of multi-crystalline grains, and the grain boundaries are what limits the transport of charge across a cell," Mittleman said. "With the resolution we can achieve, we can map out each grain to see if different arrangements or orientations have an influence on charge mobility, which could help in optimizing the cells."

That's one example of where this could be useful, Mittleman said, but it's certainly not limited to that.

"This could have fairly broad applications," he noted.


The research was supported by the National Science Foundation, the Danish Council for Independent Research and by Honeywell Federal Manufacturing & Technologies.

Media Contact

Kevin Stacey


Kevin Stacey | EurekAlert!

More articles from Information Technology:

nachricht Green Light for Galaxy Europe
15.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Tokyo Tech's six-legged robots get closer to nature
12.03.2018 | Tokyo Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>