Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that feels good

27.05.2015

Brain-computer interface to improve interaction with technology through emotion recognition

In the EMOIO project launched at the beginning of the year, Fraunhofer IAO is working with partners from research and industry to study how they might record and classify the emotional experiences that take place when a human being interacts with a technical product. The goal is to develop emotion-sensitive assistance systems that adapt to the mood and personal needs of users.

Assistance systems have great potential to help users in a wide variety of situations. When they access external user information to do so, however, things often become problematical.

With the objective of removing these barriers to usage, Fraunhofer IAO is working with research and industrial partners in the EMOIO project to develop a neuroadaptive system that will measure the users’ brain activity to determine whether they are pleased or displeased with a system-initiated assistive action.

From neuroscientific basic research to mobile application

As a first step, different neuroscientific methods are being investigated regarding their potential for real-time measurement in natural interaction scenarios. Subsequently, algorithms for real-time emotion recognition and classification will be developed. On this basis, a brain-computer interface will be created that is capable of recording and evaluating users’ subjective feelings (approval/rejection) as to the appropriateness of system-initiated behaviors and feed this information back to an adaptive assistance system.

In this way, the brain-computer interface enables assistance systems to adapt their behavior precisely to users’ individual preferences and needs. Using neurophysiological feedback for the developed system does not require direct, active feedback, hence the users are not interrupted during the interaction process. Once developed, the system will be tested in three different fields of application, whereby it will be integrated into an adaptive web interface, a driver assistance system, and a system for human-robot cooperation.

NeuroLab measures brain activity during human-technology interaction

Launched in January, the EMOIO project will run until the end of 2017. The project scientists are using Fraunhofer IAO’s new NeuroLab to evaluate different neuroscientific methods (electroencephalography and functional near infrared spectroscopy) to determine their potential for measuring emotions. The work in the NeuroLab will be mainly focused on the question of how far a combination of the two methods can improve the accuracy of the classification algorithms. Moreover, the scientists will deal with the challenge to realize emotion recognition in real time and during the interaction process.

Contact:
Fraunhofer IAO
Kathrin Pollmann, Mathias Vukelic
Phone +49 711 970-2347, -5138
kathrin.pollmann@iao.fraunhofer.de
mathias.vukelic@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/information-communication-te... Original press release

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>