Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that feels good

27.05.2015

Brain-computer interface to improve interaction with technology through emotion recognition

In the EMOIO project launched at the beginning of the year, Fraunhofer IAO is working with partners from research and industry to study how they might record and classify the emotional experiences that take place when a human being interacts with a technical product. The goal is to develop emotion-sensitive assistance systems that adapt to the mood and personal needs of users.

Assistance systems have great potential to help users in a wide variety of situations. When they access external user information to do so, however, things often become problematical.

With the objective of removing these barriers to usage, Fraunhofer IAO is working with research and industrial partners in the EMOIO project to develop a neuroadaptive system that will measure the users’ brain activity to determine whether they are pleased or displeased with a system-initiated assistive action.

From neuroscientific basic research to mobile application

As a first step, different neuroscientific methods are being investigated regarding their potential for real-time measurement in natural interaction scenarios. Subsequently, algorithms for real-time emotion recognition and classification will be developed. On this basis, a brain-computer interface will be created that is capable of recording and evaluating users’ subjective feelings (approval/rejection) as to the appropriateness of system-initiated behaviors and feed this information back to an adaptive assistance system.

In this way, the brain-computer interface enables assistance systems to adapt their behavior precisely to users’ individual preferences and needs. Using neurophysiological feedback for the developed system does not require direct, active feedback, hence the users are not interrupted during the interaction process. Once developed, the system will be tested in three different fields of application, whereby it will be integrated into an adaptive web interface, a driver assistance system, and a system for human-robot cooperation.

NeuroLab measures brain activity during human-technology interaction

Launched in January, the EMOIO project will run until the end of 2017. The project scientists are using Fraunhofer IAO’s new NeuroLab to evaluate different neuroscientific methods (electroencephalography and functional near infrared spectroscopy) to determine their potential for measuring emotions. The work in the NeuroLab will be mainly focused on the question of how far a combination of the two methods can improve the accuracy of the classification algorithms. Moreover, the scientists will deal with the challenge to realize emotion recognition in real time and during the interaction process.

Contact:
Fraunhofer IAO
Kathrin Pollmann, Mathias Vukelic
Phone +49 711 970-2347, -5138
kathrin.pollmann@iao.fraunhofer.de
mathias.vukelic@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/information-communication-te... Original press release

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>