Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology that feels good

27.05.2015

Brain-computer interface to improve interaction with technology through emotion recognition

In the EMOIO project launched at the beginning of the year, Fraunhofer IAO is working with partners from research and industry to study how they might record and classify the emotional experiences that take place when a human being interacts with a technical product. The goal is to develop emotion-sensitive assistance systems that adapt to the mood and personal needs of users.

Assistance systems have great potential to help users in a wide variety of situations. When they access external user information to do so, however, things often become problematical.

With the objective of removing these barriers to usage, Fraunhofer IAO is working with research and industrial partners in the EMOIO project to develop a neuroadaptive system that will measure the users’ brain activity to determine whether they are pleased or displeased with a system-initiated assistive action.

From neuroscientific basic research to mobile application

As a first step, different neuroscientific methods are being investigated regarding their potential for real-time measurement in natural interaction scenarios. Subsequently, algorithms for real-time emotion recognition and classification will be developed. On this basis, a brain-computer interface will be created that is capable of recording and evaluating users’ subjective feelings (approval/rejection) as to the appropriateness of system-initiated behaviors and feed this information back to an adaptive assistance system.

In this way, the brain-computer interface enables assistance systems to adapt their behavior precisely to users’ individual preferences and needs. Using neurophysiological feedback for the developed system does not require direct, active feedback, hence the users are not interrupted during the interaction process. Once developed, the system will be tested in three different fields of application, whereby it will be integrated into an adaptive web interface, a driver assistance system, and a system for human-robot cooperation.

NeuroLab measures brain activity during human-technology interaction

Launched in January, the EMOIO project will run until the end of 2017. The project scientists are using Fraunhofer IAO’s new NeuroLab to evaluate different neuroscientific methods (electroencephalography and functional near infrared spectroscopy) to determine their potential for measuring emotions. The work in the NeuroLab will be mainly focused on the question of how far a combination of the two methods can improve the accuracy of the classification algorithms. Moreover, the scientists will deal with the challenge to realize emotion recognition in real time and during the interaction process.

Contact:
Fraunhofer IAO
Kathrin Pollmann, Mathias Vukelic
Phone +49 711 970-2347, -5138
kathrin.pollmann@iao.fraunhofer.de
mathias.vukelic@iao.fraunhofer.de

Weitere Informationen:

http://www.iao.fraunhofer.de/lang-en/business-areas/information-communication-te... Original press release

Juliane Segedi | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>