Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will mean shift for Internet advertising

20.04.2010
Placing internet ads on websites will be easier and more profitable in the future thanks to a new technology developed at the University of Toronto that allows ads to be resized to fit any available website space.

Internet ads are currently only available in three or four specific sizes, meaning websites must be designed around the ads. The size restrictions greatly limit ad placement options and affect the way ads look on devices such as the iPhone and iPad.

But a new technology, developed by UofT Electrical and Computer Engineering associate professor Parham Aarabi, enables ads to be resized automatically to conform to any web space. Aarabi will present the concept at the World Wide Web 2010 Conference in late April in Raleigh, North Carolina.

"Currently, a significant portion of usable website spaces are not used for advertising because the standard size ads don't fit," says Aarabi, Canada Research Chair in Internet Video, Audio, and Image Search. "Our technology is the first ever to conform ads to any available website space in an automated and practical way. Essentially, advertisers provide a single ad at a preset size, and our technology can, automatically and dynamically, regenerate the ad at any size, resolution, or aspect ratio by taking into account the contents of the ad, relevant text, and other information."

He adds that the technology will translate into profit because formerly wasted web space can be used for advertising.

"Given an online advertising market worth billions of dollars, this technology could significantly increase revenues for publishers, and create new opportunities for advertisers," Aarabi says.

For more information on the technology, please contact:

Parham Aarabi
Associate Professor of Electrical and Computer Engineering
Canada Research Chair in Internet, Video, Audio and Image Search
647-350-6525
parham@ecf.utoronto.ca
University of Toronto media relations
416-978-0100
media.relations@utoronto.ca

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>