Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology will mean shift for Internet advertising

20.04.2010
Placing internet ads on websites will be easier and more profitable in the future thanks to a new technology developed at the University of Toronto that allows ads to be resized to fit any available website space.

Internet ads are currently only available in three or four specific sizes, meaning websites must be designed around the ads. The size restrictions greatly limit ad placement options and affect the way ads look on devices such as the iPhone and iPad.

But a new technology, developed by UofT Electrical and Computer Engineering associate professor Parham Aarabi, enables ads to be resized automatically to conform to any web space. Aarabi will present the concept at the World Wide Web 2010 Conference in late April in Raleigh, North Carolina.

"Currently, a significant portion of usable website spaces are not used for advertising because the standard size ads don't fit," says Aarabi, Canada Research Chair in Internet Video, Audio, and Image Search. "Our technology is the first ever to conform ads to any available website space in an automated and practical way. Essentially, advertisers provide a single ad at a preset size, and our technology can, automatically and dynamically, regenerate the ad at any size, resolution, or aspect ratio by taking into account the contents of the ad, relevant text, and other information."

He adds that the technology will translate into profit because formerly wasted web space can be used for advertising.

"Given an online advertising market worth billions of dollars, this technology could significantly increase revenues for publishers, and create new opportunities for advertisers," Aarabi says.

For more information on the technology, please contact:

Parham Aarabi
Associate Professor of Electrical and Computer Engineering
Canada Research Chair in Internet, Video, Audio and Image Search
647-350-6525
parham@ecf.utoronto.ca
University of Toronto media relations
416-978-0100
media.relations@utoronto.ca

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>