Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Technology behind the Personal Network

18.11.2008
Experts believe Personal Networks will run to a thousand devices by 2017, which presents an enormous networking challenge. European researchers are developing some very clever technology to create a Smart Personal Network that can cope with all those devices.

When sensors, personal and home devices and in-car technology are all counted, expert group, the Wireless World Research Forum, believes people will own and use up to a thousand devices by 2017.

It may not be that many in the end, but it will be an awful lot and it will be impossible for an individual to manage all the data, networking, functionality and services for so many tools. Smart Personal Networks will be essential.

A Personal Network (PN) links together a group of Personal Area Networks (PANs) and all devices and technology belonging to a private entity, whether it is a person, or eventually a car or an airplane. Developing a robust, effective and trustworthy network represents an enormous challenge.

Enter the MAGNET Beyond project, a huge European effort to develop a PN to respond to the challenge posed by 2017. The vision requires a lot of new software and hardware technology and key to the technical effort was the development of the architecture, optimised air interfaces and tailored security.

The architecture in MAGNET Beyond is based on four conceptual layers: connectivity, network, service enabler (middleware), and service layers.

The connectivity layer is able to handle connections to any mix of radio frequency (RF) networks, from Bluetooth to 3G and everything in between. It is also designed to cope with any emerging RF technologies, like Beyond 3G (B3G).

Promiscuous PNs

The connectivity layer masks the underlying RF system from the rest of the MAGNET platform, which provides seamless and hassle-free connections for the user.

The network layer handles the management or creation of Personal Networks and communications within and between PNs. It is also responsible for the creation of permanent or temporary PN federations. A federation exists when two separate PNs link together – to those belonging to friends, family, clients or colleagues, for example.

The federation can exist on a temporary or permanent basis. Similarly, when the user is travelling, the PN can federate with anyone he or she meets. It is known as a promiscuous PN.

The middleware layer provides overlays for service and context management and acts as a service enabler.

Software and beyond

MAGNET Beyond went beyond software and developed innovative new hardware prototypes for the support of the MAGNET system. The project designed two new optimised air interfaces for Low Data Rate (LDR AI) and for High Data Rate (HDR AI) communications.

The LDR AI is based on ultra-wideband (UWB) transmission with frequency modulation (FM) aiming at short-range applications with low data rates. Transmission is under 10 metres and lower than 100kbps. The interface is power efficient, cost efficient and simple to manufacture and integrate into common devices.

“The project has produced one of the first, if not the first, Ultra Wide Band (UWB) chipset for High Band operation,” explains Liljana Gavrilovska, Technical Manager of the MAGNET Beyond project (see photo 1, above).

UWB is a radio technology that can work with very low energy levels for short-range high-bandwidth communications by using a large portion of the radio spectrum collectively.

The HDR AI, on the other hand, relies on multicarrier transmission with frequency spectrum spreading (MC-SS) to maximise achievable data rates, which are impressive: the maximum data rate is approximately 130 Mbps. The two radio interfaces can coexist on the same device providing multimode operations (see photo 2)

The HDR achieves its data rate without using multiple-input multiple-output techniques (MIMO), which could push the rate higher. It means the technology has an upgrade path that can cope with higher data rate applications of the future.

The air interfaces are an impressive success, offering a new standard in optimised, low-cost communications.

Even better, other EU-funded projects are keen to take advantage of the new devices. Both ORACLE and WHERE projects are exploring the potential of the HDR AI and OMEGA has also shown an interest. Right now, the MAGNET Beyond HDR is in the patent process.

And that was just one element of the overall MAGNET programme.

Personal security

Security, too, was a major focus of the project and led to a suite of solutions. There were four core activities, with security working across all layers.

The first activity, Personal Network security architecture, looked at network security and group communication. Another activity, Lightweight crypto, examined improvements for pairing devices within a PN, establishing a link between two devices.

A third, Context aware security management, dealt with privacy, profiles, roles and associated security requirements relevant to the user’s context, whether at work or home, for example. Finally, the project undertook validation, implementation, performance and analysis of potential threats and attacks.

The methods developed by the group included a PN federation protocol suite, secured through separate lightweight public key infrastructure for authentication. It also uses a high performance group key management for access control.

The EU-funded MAGNET Beyond project also developed a new physical layer encryption concept that works with very low-power devices. Anonymity, too, was a focus of the security efforts, with the project developing an avatar concept to provide a virtual identity and ensure complete, anonymous access.

In all, the hard and soft technology developed by MAGNET Beyond responded to real, current needs, but designed solutions so that they are flexible and upgradable, and can adapt to new standards and technology in the future.

It is an impressive list of achievements and finally delivers a platform that can create simple, transparent, effective and secure Smart Personal Networks capable of coping with the bewildering growth in personal technologies.

But the real proof of MAGNET Beyond’s technology lies in the real-world performance tests undertaken with the prototype in validations and pilot demonstrations.

The MAGNET Beyond project received funding from the ICT strand of the Sixth Framework Programme for research.

This is part two of a three-part series on MAGNET Beyond.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/90204

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>