Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Delivers Development Aid Via Cell Phone Animations

01.03.2011
A farmer in Niger learns how to protect his crops from insects. A resident of Port-au-Prince or a rural Haitian village learns how to avoid exposure to cholera. An entrepreneur in Mali gets step-by-step instructions on extracting the oil from shea seeds to make shea butter she can sell at a local market.

These people are benefiting from a new approach to sustainable development education that reaches a much larger audience than traditional methods – and at a fraction of the cost. The initiative, led by a team of extension educators and faculty at the University of Illinois, produces animated educational videos that people around the world can watch at home, over and over again, on their cell phones.

“This is a very different paradigm from some other current development projects, where U.S.-based educators are flown to another part of the world, interact with people in the field for a few weeks to several months, and leave,” said University of Illinois entomology professor Barry Pittendrigh, a member of the team that is developing the animations. “From a financial perspective, this is a much cheaper way to do international development.” (Watch a video about the project.)

The initiative, Scientific Animations Without Borders, takes advantage of the widespread availability of cell phones in the developing world. According to recent research, nearly 60 percent of the 2.4 billion cell phone users in the world live in developing countries.

As of 2006, more than 150 million cell phone users lived in Africa, for example, with cell phone technology spreading faster there than anywhere else in the world.

Animation reduces the costs associated with making a video on a particular topic, and allows the videos themselves to have near-universal appeal. The videos are narrated, and the narration can be recorded in any language with any dialect or accent.

“The way these animated videos are designed, they can be easily adapted to other cultures,” said Julia Bello-Bravo, a University of Illinois field extension specialist and leader of the project. “We are also capturing indigenous knowledge and putting it into the video, so when they see the video it is familiar to them.”

The first animated videos developed by the Illinois team (with funding from the Dry Grain Pulses CRSP - U.S. Agency for International Development and created in collaboration with aid workers and farmers in West Africa) demonstrate safe insect-control methods that are already in use in some regions. The scientifically validated techniques make use of local plants or widely available materials – such as black plastic sheets, ashes, or plastic bags – to control or eradicate insect pests from cowpeas, a staple in many parts of Africa, Asia, and Central and South America.

In one video, a farmer processes the fruits of the neem tree (Azadirachta indica) to make a liquid insecticide that he sprays on his cowpea crop. The neem is a drought-tolerant tree found in Southeast Asia and parts of Sub-Saharan Africa. Farmers working with extension educators in West Africa developed the methods depicted in the video, Bello-Bravo said. Scientific studies had validated the methods and the materials needed were cheap and widely available, she said. But explaining the technique to large numbers of people would be difficult and costly.

“In Mali they are using this technique and it’s very effective, but in Burkina Faso, for example, there are not many people using this technique,” she said. “If we can show these animated videos in different parts of West Africa where this tree grows, we can get the information to many, many more people.”

A newer video demonstrates how to boil or treat water to avoid exposure to cholera. This video is available in English, French, Haitian Creole and other languages.

The process of producing the videos is fairly fast and cheap. Communicating primarily via e-mail, aid workers, farmers, entrepreneurs and an animator collaborate on the videos with the Illinois team. Once the content is approved, the collaborators produce two scripts: one to be read by a narrator and the other describing the actions the animated character is to perform. The animator builds the animation in stages with input from the collaborative team. Once a video is complete, the voice-over narration can be swapped out to match that of a particular country or region.

In this way, the team is building a library of educational videos that can be distributed around the world via e-mail or through the sustainable development website, SusDeViki.

(For more information about SusDeViki, see: “From Llama Herders to Chai Wallas: New Website Will Engage the World.”)

Future videos will touch on other agricultural or health issues, such as bed bugs, lice or malaria, and will target viewers in the developed and developing world.

The team at Illinois also includes extension educator Francisco Seufferheld and entomology department graduate students Tolulope Agunbiade and Laura Steele, with technical assistance from Martin Booth Hodges. The group collaborates most closely with on-site field educators in Benin, Burkina Faso, Mali, Niger, and Nigeria. The team works with an international cell phone deployment network through Kathleen Robbins. They are also collaborating with Dr. Madhu Viswanathan on animations for marketplace literacy. Daniel Guillot heads the animation team.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>