Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team Delivers Development Aid Via Cell Phone Animations

01.03.2011
A farmer in Niger learns how to protect his crops from insects. A resident of Port-au-Prince or a rural Haitian village learns how to avoid exposure to cholera. An entrepreneur in Mali gets step-by-step instructions on extracting the oil from shea seeds to make shea butter she can sell at a local market.

These people are benefiting from a new approach to sustainable development education that reaches a much larger audience than traditional methods – and at a fraction of the cost. The initiative, led by a team of extension educators and faculty at the University of Illinois, produces animated educational videos that people around the world can watch at home, over and over again, on their cell phones.

“This is a very different paradigm from some other current development projects, where U.S.-based educators are flown to another part of the world, interact with people in the field for a few weeks to several months, and leave,” said University of Illinois entomology professor Barry Pittendrigh, a member of the team that is developing the animations. “From a financial perspective, this is a much cheaper way to do international development.” (Watch a video about the project.)

The initiative, Scientific Animations Without Borders, takes advantage of the widespread availability of cell phones in the developing world. According to recent research, nearly 60 percent of the 2.4 billion cell phone users in the world live in developing countries.

As of 2006, more than 150 million cell phone users lived in Africa, for example, with cell phone technology spreading faster there than anywhere else in the world.

Animation reduces the costs associated with making a video on a particular topic, and allows the videos themselves to have near-universal appeal. The videos are narrated, and the narration can be recorded in any language with any dialect or accent.

“The way these animated videos are designed, they can be easily adapted to other cultures,” said Julia Bello-Bravo, a University of Illinois field extension specialist and leader of the project. “We are also capturing indigenous knowledge and putting it into the video, so when they see the video it is familiar to them.”

The first animated videos developed by the Illinois team (with funding from the Dry Grain Pulses CRSP - U.S. Agency for International Development and created in collaboration with aid workers and farmers in West Africa) demonstrate safe insect-control methods that are already in use in some regions. The scientifically validated techniques make use of local plants or widely available materials – such as black plastic sheets, ashes, or plastic bags – to control or eradicate insect pests from cowpeas, a staple in many parts of Africa, Asia, and Central and South America.

In one video, a farmer processes the fruits of the neem tree (Azadirachta indica) to make a liquid insecticide that he sprays on his cowpea crop. The neem is a drought-tolerant tree found in Southeast Asia and parts of Sub-Saharan Africa. Farmers working with extension educators in West Africa developed the methods depicted in the video, Bello-Bravo said. Scientific studies had validated the methods and the materials needed were cheap and widely available, she said. But explaining the technique to large numbers of people would be difficult and costly.

“In Mali they are using this technique and it’s very effective, but in Burkina Faso, for example, there are not many people using this technique,” she said. “If we can show these animated videos in different parts of West Africa where this tree grows, we can get the information to many, many more people.”

A newer video demonstrates how to boil or treat water to avoid exposure to cholera. This video is available in English, French, Haitian Creole and other languages.

The process of producing the videos is fairly fast and cheap. Communicating primarily via e-mail, aid workers, farmers, entrepreneurs and an animator collaborate on the videos with the Illinois team. Once the content is approved, the collaborators produce two scripts: one to be read by a narrator and the other describing the actions the animated character is to perform. The animator builds the animation in stages with input from the collaborative team. Once a video is complete, the voice-over narration can be swapped out to match that of a particular country or region.

In this way, the team is building a library of educational videos that can be distributed around the world via e-mail or through the sustainable development website, SusDeViki.

(For more information about SusDeViki, see: “From Llama Herders to Chai Wallas: New Website Will Engage the World.”)

Future videos will touch on other agricultural or health issues, such as bed bugs, lice or malaria, and will target viewers in the developed and developing world.

The team at Illinois also includes extension educator Francisco Seufferheld and entomology department graduate students Tolulope Agunbiade and Laura Steele, with technical assistance from Martin Booth Hodges. The group collaborates most closely with on-site field educators in Benin, Burkina Faso, Mali, Niger, and Nigeria. The team works with an international cell phone deployment network through Kathleen Robbins. They are also collaborating with Dr. Madhu Viswanathan on animations for marketplace literacy. Daniel Guillot heads the animation team.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Information Technology:

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

nachricht Internet of things made simple: One sensor package does work of many
11.05.2017 | Carnegie Mellon University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>