Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switchable adhesion principle enables damage-free handling of sensitive devices even in vacuum

10.06.2014

Components with highly sensitive surfaces are used in automotive, semiconductor and display technologies as well as for complex optical lens systems.

During the production process, these parts are transferred in between many process steps. Each pick-up and release with conventional gripping systems involves the risk of either contamination of the surfaces with residues from transportation adhesives, or damaging due to mechanical gripping.


Gecomer© technology at the INM

Source: Uwe Bellhäuser, only free within this press release


Gecobot 2.0

Source: Uwe Bellhäuser, only free within this press release

Suction cup systems diminish residues, but fail in a vacuum or on rough surfaces. Researchers at the Leibniz Institute for New Materials (INM) enhanced the Gecko adhesion principle that adhesion can be switched on and off in vacuum.

With the “gecobot 2.0”, the researchers from the INM will be presenting their new Gecomer® technology at the International Innovation Conference and Expo TechConnect World from June 16 to 17, Washington DC, USA, at Stand 301in the German Area.

"Artificially produced microscopic pillars, so-called gecko structures, adhere to various items. By bending these pillars, the adhesion can be switched off. Thus, items can be lifted and quickly released," explains Karsten Moh from the Program Division Functional Microstructures.

"This technique is particularly interesting in vacuum, as suction cups fail here," says Moh. Parts, for example, can be moved within a reactor chamber for vapor phase deposition (CVD or PVD). With the currently developed adhesion system, objects with smooth surfaces can be lifted and released, having a weight of approximately 100 grams per square centimeter (ca.0.03 lbs per square inch)."

In our test runs, the system has proved successful even after 20,000 runs", says the upscaling expert Moh.

The development group is now working on the gripping of more complicated objects without leaving residues using this adhesion principle. "Then, we could also move glass lenses or automobile bumpers without damaging them in the production process," says Moh.

From June 16 to 17, the researchers of the INM present this and further results at Stand 301 in the German Area. This includes new developments in the field of display techniques, printed electronics, corrosion protection, antifouling and antifriction.

Your expert at the Stand:
Joachim Blau
Dr. Karsten Moh

Your expert at the INM:
Prof. Eduard Arzt
INM – Leibniz Institute for New Materials
Head Functional Microstructures
Phone: +49681-9300-500
eduard.arzt@inm-gmbh.de

INM conducts research and development to create new materials – for today, tomorrow and beyond. Chemists, physicists, biologists, materials scientists and engineers team up to focus on these essential questions: Which material properties are new, how can they be investigated and how can they be tailored for industrial applications in the future? Four research thrusts determine the current developments at INM: New materials for energy application, new concepts for medical surfaces, new surface materials for tribological applications and nano safety and nano bio. Research at INM is performed in three fields: Nanocomposite Technology, Interface Materials, and Bio Interfaces.
INM – Leibniz Institute for New Materials, situated in Saarbruecken, is an internationally leading centre for materials research. It is an institute of the Leibniz Association and has about 195 employees.

Weitere Informationen:

http://www.inm-gmbh.de/en

Dr. Carola Jung | idw - Informationsdienst Wissenschaft

Further reports about: Division INM Interface Leibniz-Institut Technology adhesion reactor smooth structures surfaces vacuum

More articles from Information Technology:

nachricht Supercomputing the emergence of material behavior
18.05.2018 | University of Texas at Austin, Texas Advanced Computing Center

nachricht Keeping a Close Eye on Ice Loss
18.05.2018 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>