Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Swedish research can make Super Mario more realistic

04.03.2009
Computer games are being developed at an ever more rapid pace, and the technical demands are rising, not least regarding graphics boards.

At Mälardalen University in Sweden, researchers have now found a solution to a problem that often arises when new computer games are constructed, namely how you can efficiently make sure that the animated figures don't run right through each other.

Researcher Thomas Larsson is presenting a new model that enables complex figures to collide with each other in a credible way - preferably with sound effects, deformations, and other consequences, just as in reality.

In his dissertation he presents faster methods for discovering collisions in interactive simulations with computer graphics. The methods function both with rigid bodies and various types of deformable bodies. Besides computer games, simulations in robotics, virtual surgery, and visualization are suitable applications for the methods.

"Today regular computers can draw realistic images of complex 3D environments in the blink of an eye. This is thoroughly exploited in modern computer games, for example. The images are therefore better and better in quality, so people even use terms like photographic realism. These images are generated by a powerful graphics board in the computer, which draws millions of tiny surfaces, usually triangles, in a few milliseconds."

"But it's not enough simply to draw the images. To animate or simulate objects that move or fly around on the screen, the objects need to be able to react to collisions. In many cases the collision calculations, just like the image generation itself, have to be done in a few milliseconds, otherwise the interactivity and the experience are ruined."

All this is self-evident in the real world where objects follow the rules of physics governing movement and collisions. But in a computer simulation objects go right through each other as if they had never collided, unless special measures are taken. These measures require methods that use calculations to discover that objects are actually colliding with each other and then take suitable measures. In some cases it is sufficient to have the objects change direction by bouncing off each other. In other cases they may need to be dented (deformed), break into pieces, or even explode. Future versions of "Super Mario" will require superfast collision calculations in order to stimulate and visualize characters' movements and interaction with their surroundings in a realistic manner.

Contact information for Thomas Larsson phone +46-21 10 15 14 or email:thomas.larsson@mdh.se

Pressofficer Peter Mannerfelt: +46-705 353 432 or peter.mannerfelt@mdh.se

Thomas Larsson will publicly defend his dissertation Adaptive Bounding Volume Hierarchies for Efficient Collision Queries March 5.

Thomas Larsson is an assistant professor of computer science at Mälardalen University, where one of his duties is to teach on the Computer Science Program Specializing in Game Development.

Peter Mannerfelt | idw
Further information:
http://www.mdh.se
http://www.vr.se

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>