Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New supercomputer sets record for highest performance in PC clusters, Japan

02.11.2009
A new supercomputer developed at RIKEN has set a new record for computing performance by effectively harnessing the parallel processing power of computer clusters.

Named RICC (RIKEN Integrated Cluster of Clusters), the supercomputer is made up of four distinct computer clusters connected through InfiniBand interconnections, and has achieved a performance of 97.94 teraflops on the LINPACK benchmark.

RICC’s performance ranks it first among PC cluster systems in Japan and marks an increase in peak performance of 8.5 times over its predecessor, the RIKEN Super Combined Cluster (RSCC). In achieving this level of performance, RICC leverages a complex computing environment made up of four distinct sub-systems: a massively parallel cluster, a large memory capacity server, a multi-purpose parallel cluster, and a PC cluster with MD-GRAPE3—a supercomputing system specialized for molecular dynamics simulations. An advanced high-performance job scheduler developed at RIKEN coordinates hierarchical multi-level computing resources (cores, processors, computing nodes, PC cluster sub-systems and the whole system), minimizing job waiting time and maximizing job throughput.

By bringing together computing systems with different functions and purposes into a single supercomputer, RICC is able to cater to the needs of researchers from across a wide range of research fields. Researchers developing software for RIKEN’s Next-Generation Supercomputer, scheduled for completion in 2012, can use RICC to test application programs specifically designed for a massively parallel processing environment. The system will also be capable of processing large volumes of experimental data from advanced DNA sequencers, accelerators and RIKEN’s X-ray Free Electron Laser (XFEL). In addition, RICC is equipped with a programmable accelerator (GPGPU) that supplies user applications with more powerful computing capability. From the users’ perspective, RICC is also very convenient to use, with a front-end system that provides accessibility via an SSH-enabled terminal, a web-based service and by mobile phone.

As the country’s most powerful supercomputing system, RICC promises to accelerate ongoing research as well as open doors to new research possibilities. Routine operation of RICC, which started test operations on August 3, will commence from October 1.

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/roundup/6115
http://www.researchsea.com

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>