Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer Flexibility Increased by Virtualized Operating System

25.01.2010
Supercomputers have sprung up across the world landscape like the statues on Easter Island — separate, huge, and impenetrable to the average person. They perform hundreds of trillion calculations per second, a figure almost ungraspable by a species that may have entered mathematics by first counting on its fingers.

But new work on Sandia National Laboratories’ Red Storm supercomputer — the 17th fastest in the world — is helping to make supercomputers more accessible, in effect removing them from the solitary confinement of their specialized operating systems.

Sandia researchers, working hand in hand with researchers from Northwestern University and the University of New Mexico, socialized 4,096 of Red Storm’s total 12,960 computer nodes into accepting a virtual external operating system — a leap of at least two orders of magnitude over previous such efforts.

“The goal is to create a more flexible environment for all users,” said Sandia researcher Kevin Pedretti, who led Sandia researchers in adapting and optimizing a Northwestern program called Palacios for the Red Storm environment. Sandia researchers directed the testing effort.

Built by Sandia as part of the National Nuclear Security Administration’s (NNSA) program to ensure the safety, security and effectiveness of the nation’s nuclear stockpile without testing, Red Storm’s advanced computational capabilities are also being utilized in unclassified modes to contribute to global efforts to combat climate change, evaluate dangers from possible asteroid strikes, and help solve other problems of national interest.

Peter Dinda, professor of electrical engineering and computer science at Northwestern’s McCormick School of Engineering, added, “If we can virtualize supercomputers without performance compromises we will make them easier to use and easier to manage, generally increasing the utility of these very large national infrastructure investments.” Dinda led the development of Palacios with his student Jack Lange.

Because of the complex nature of the classified work performed on Red Storm in the service of stockpile stewardship, its operating system is functionally restrictive compared with a general-purpose operating system.

Enter the technique called virtualization. A virtual machine in effect separates the hardware of a computer from its operating system.

“Our observation is that no single operating system will satisfy the needs of all potential users,” said Pedretti, “so we are attempting to leverage the virtualization hardware in modern processors to allow users to select the operating system best for them to use at run-time.”

This could permit one machine to simultaneously run multiple operating systems, with the possibility of migrating these systems from one computer to another. To achieve this trick on Red Storm, a receptor operating system called Kitten has been developed primarily at Sandia, while a virtual machine monitoring program called Palacios was developed at Northwestern. Operating through the filter of this programming translation, a program not native to Red Storm can run on nodes of the machine

The overlaid program was only 5 percent less effective than running Red Storm’s native, fixed programming. That figure, called overhead, represents the additional expense in time and efficiency of running the program in a virtualized environment.

“We believe the results show that the benefits of virtualization can be brought to even the largest computers in the world without performance compromises,” said Pedretti.

This would mean that researchers around the world should one day be able to run their own simulations on huge machines at remote sites without having to reconfigure their software to the machine’s specific hardware and software environment.

“Visualization technology provides a path for supporting a broader range of supercomputer applications, both for traditional scientific computing and for national security purposes,” says Pedretti.

The virtualization market in general is reported by industry magazines to be billions of dollars.

The work was funded for Sandia by its Laboratory Directed Research and Development program. Northwestern and UNM work was funded by the National Science Foundation.

Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Neal Singer | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Information Technology:

nachricht Cutting edge research for the industries of tomorrow – DFKI and NICT expand cooperation
21.03.2017 | Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, DFKI

nachricht Molecular motor-powered biocomputers
20.03.2017 | Technische Universität Dresden

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>