Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer fastest of its type in world

27.07.2009
A supercomputer named Novo-G described by its lead designer as likely the most powerful computer of its kind in the world became operational this week at the University of Florida.

Novo-G gets the first part of its name from the Latin term for “make anew, change, alter,” and the second from “G” for “genesis.” A “reconfigurable” computer, it can rearrange its internal circuitry to suit the task at hand.

Applications range from space satellites to research supercomputers — anywhere size, energy and high speed are important, said Alan George, professor of electrical and computer engineering and director of UF’s National Science Foundation Center for High-Performance Reconfigurable Computing.

Traditional computers use so-called “fixed logic devices” to perform a large variety of tasks. But this jack-of-all-trades approach requires a substantial amount of overhead in space and energy, no matter what work needs to be done. On the other hand, special-purpose computers can be built to perform certain tasks very well but are not flexible.

Reconfigurable computers make the best of both worlds, George said. That is because they can rearrange their internal circuitry like Lego blocks, creating the most appropriate architecture for each assignment. As a result, a reconfigurable computer can be from 10 to 100 times faster than other computers its size while using five to 10 times less energy.

Although the concept has been proven, reconfigurable computers remain at the research stage and are not easy to use. One of the main goals of the NSF Center is to pioneer techniques to make reconfigurable computers more accessible.

“It is very powerful technology, but it is also very complicated technology,” George said. “We don’t want this important technology to be accessible only to experts.”

UF has three partner universities in its reconfigurable computing center — Brigham Young University, George Washington University and Virginia Tech — as well as about 30 industry and government partners. The center was founded in 2007.

Alan George | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht New epidemic management system combats monkeypox outbreak in Nigeria
15.12.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>