Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Supercomputer fastest of its type in world

27.07.2009
A supercomputer named Novo-G described by its lead designer as likely the most powerful computer of its kind in the world became operational this week at the University of Florida.

Novo-G gets the first part of its name from the Latin term for “make anew, change, alter,” and the second from “G” for “genesis.” A “reconfigurable” computer, it can rearrange its internal circuitry to suit the task at hand.

Applications range from space satellites to research supercomputers — anywhere size, energy and high speed are important, said Alan George, professor of electrical and computer engineering and director of UF’s National Science Foundation Center for High-Performance Reconfigurable Computing.

Traditional computers use so-called “fixed logic devices” to perform a large variety of tasks. But this jack-of-all-trades approach requires a substantial amount of overhead in space and energy, no matter what work needs to be done. On the other hand, special-purpose computers can be built to perform certain tasks very well but are not flexible.

Reconfigurable computers make the best of both worlds, George said. That is because they can rearrange their internal circuitry like Lego blocks, creating the most appropriate architecture for each assignment. As a result, a reconfigurable computer can be from 10 to 100 times faster than other computers its size while using five to 10 times less energy.

Although the concept has been proven, reconfigurable computers remain at the research stage and are not easy to use. One of the main goals of the NSF Center is to pioneer techniques to make reconfigurable computers more accessible.

“It is very powerful technology, but it is also very complicated technology,” George said. “We don’t want this important technology to be accessible only to experts.”

UF has three partner universities in its reconfigurable computing center — Brigham Young University, George Washington University and Virginia Tech — as well as about 30 industry and government partners. The center was founded in 2007.

Alan George | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>