Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

First student-developed mission in which satellites orbit and communicate led by UT students

25.03.2011
Two satellites designed and constructed by students at the Cockrell School of Engineering successfully separated in space March 22, completing the most crucial goal of the mission since its Nov. 19 launch and making them the first student-developed mission in the world in which satellites orbit and communicate with each other in real-time.

The satellites separated March 22 at 6:35 a.m. Central Standard Time. Now that they're apart, the 60-plus pound, tire-sized satellites will be able to perform the main goals of the project and could pave the way for more complex satellite missions that require real-time coordination between small satellites.

Traditionally, larger and expensive satellites have been commonplace in space missions but the satellites developed by more than 150 aerospace engineering graduate and undergraduate students could demonstrate the potential for space technology that's more affordable and accessible—a forward-looking approach that's attracted the interest of the Air Force and NASA.

The smaller satellites could also help prevent tragedies like the Columbia space shuttle disaster, which, unknown to the shuttle's crew, had a hole in the left wing that caused it to disintegrate upon reentry to the Earth's atmosphere Feb. 1, 2003, killing all seven onboard.

... more about:
»Ambient Air »small satellites

"If they would have had the technology that could go outside the shuttle and inspect it, then the hole could have been discovered," Lightsey said.

The students, led by their faculty advisor Professor Glenn Lightsey, built the satellites over the course of seven years using a shoestring hardware budget of $250,000 — a small amount compared to the millions typically spent on spacecraft missions.

They were launched into orbit from Alaska's Kodiak Launch Complex in November, a moment that was considered the pinnacle of the students' years of work. But the real moment of truth came early Tuesday morning when they separated, said Lightsey.

"We had to work through some problems on the satellites to get the separation to occur, but the student-team figured out a way to get the command to work. I am very proud of all of them," said Lightsey. "We have achieved a true first in spacecraft engineering."

The satellites will collect scientific data and be able to report their location and proximity to each other to students and amateur radio operators tracking their orbit some 400 miles above.

The project is part of the University Nanosat-3 Program started in 2003 and sponsored by the Air Force. In January 2005, The University of Texas at Austin bested 11 other universities and won the program's grant-based competition to launch the FASTRAC satellites into space.

Melissa Mixon | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: Ambient Air small satellites

More articles from Information Technology:

nachricht Information integration and artificial intelligence for better diagnosis and therapy decisions
24.05.2017 | Fraunhofer MEVIS - Institut für Bildgestützte Medizin

nachricht World's thinnest hologram paves path to new 3-D world
18.05.2017 | RMIT University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>