Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step right Up, Let The Computer Look At Your Face And Tell You Your Age

24.09.2008
People who hope to keep their age a secret won’t want to go near a computer running this software.

Like an age-guesser at a carnival, computer software being developed at the University of Illinois can fairly accurately estimate a person’s age. But, unlike age-guessers, who can view a person’s body, the software works by examining only the person’s face.

“Age-estimation software is useful in applications where you don’t need to specifically identify someone, such as a government employee, but would like to know their age,” said Thomas S. Huang, the William L. Everitt Distinguished Professor of Electrical and Computer Engineering at the U. of I.

For example, age-recognition algorithms could stop underage drinkers from entering bars, prevent minors from purchasing tobacco products from vending machines, and deny children access to adult Web sites, said Huang, who leads the Image Formation and Processing group at the university’s Beckman Institute.

Estimating someone’s age is not an easy task, even for a computer. That’s partly because the aging process is determined not only by a person’s genetic makeup, but by many other factors as well, including health, location and living conditions.

“Human faces do convey a significant amount of information, however, and provide important visual cues for estimating age,” Huang said. “Facial attributes, such as expression, gender and ethnic origin, play a crucial role in our image analysis.”

Consisting of three modules – face detection, discriminative manifold learning, and multiple linear regression – the researchers’ age-estimation software was trained on a database containing photos of 1,600 faces.

The software can estimate ages from 1 year to 93 years. The software’s accuracy ranges from about 50 percent when estimating ages to within 5 years, to more than 80 percent when estimating ages to within 10 years. The accuracy can be improved by additional training on larger databases of faces, Huang said.

In addition to performing tasks such as security control and surveillance monitoring, age-estimation software also could be used for electronic customer relationship management.

For example, a camera snapping photos of customers could collect demographic data – such as how many adult men and women buy burgers, or what percentage of teenagers purchase a particular soft drink.

Or, combined with algorithms that identify a person’s sex, age-estimation software could help target specific audiences for specific advertisements. For example, a store display might advertise a new automobile or boat as a man walks by, or new clothing or cosmetics as a woman walks by.

“All of this can be done without violating anyone’s privacy,” Huang said. “Our software does not identify specific individuals. It just estimates their ages.”

Huang is affiliated with the university’s Center for Advanced Study, Coordinated Science Laboratory, Information Trust Institute, and department of computer science.

Funding was provided by the National Science Foundation and the Intelligence Advanced Research Projects Activity. The researchers published their findings in the two journals IEEE Transactions on Multimedia and IEEE Transactions on Image Processing in 2008.

Editor’s note: To reach Thomas Huang, call 217-244-1638; e-mail: thuang1@illinois.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://www.news.uiuc.edu/news/08/0923age.html

More articles from Information Technology:

nachricht Magnetic Quantum Objects in a "Nano Egg-Box"
25.07.2017 | Universität Wien

nachricht 3-D scanning with water
24.07.2017 | Association for Computing Machinery

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Physicists gain new insights into nanosystems with spherical confinement

27.07.2017 | Materials Sciences

Seeing more with PET scans: New chemistry for medical imaging

27.07.2017 | Life Sciences

Did you know that infrared heat and UV light contribute to the success of your barbecue?

27.07.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>