Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Step right Up, Let The Computer Look At Your Face And Tell You Your Age

24.09.2008
People who hope to keep their age a secret won’t want to go near a computer running this software.

Like an age-guesser at a carnival, computer software being developed at the University of Illinois can fairly accurately estimate a person’s age. But, unlike age-guessers, who can view a person’s body, the software works by examining only the person’s face.

“Age-estimation software is useful in applications where you don’t need to specifically identify someone, such as a government employee, but would like to know their age,” said Thomas S. Huang, the William L. Everitt Distinguished Professor of Electrical and Computer Engineering at the U. of I.

For example, age-recognition algorithms could stop underage drinkers from entering bars, prevent minors from purchasing tobacco products from vending machines, and deny children access to adult Web sites, said Huang, who leads the Image Formation and Processing group at the university’s Beckman Institute.

Estimating someone’s age is not an easy task, even for a computer. That’s partly because the aging process is determined not only by a person’s genetic makeup, but by many other factors as well, including health, location and living conditions.

“Human faces do convey a significant amount of information, however, and provide important visual cues for estimating age,” Huang said. “Facial attributes, such as expression, gender and ethnic origin, play a crucial role in our image analysis.”

Consisting of three modules – face detection, discriminative manifold learning, and multiple linear regression – the researchers’ age-estimation software was trained on a database containing photos of 1,600 faces.

The software can estimate ages from 1 year to 93 years. The software’s accuracy ranges from about 50 percent when estimating ages to within 5 years, to more than 80 percent when estimating ages to within 10 years. The accuracy can be improved by additional training on larger databases of faces, Huang said.

In addition to performing tasks such as security control and surveillance monitoring, age-estimation software also could be used for electronic customer relationship management.

For example, a camera snapping photos of customers could collect demographic data – such as how many adult men and women buy burgers, or what percentage of teenagers purchase a particular soft drink.

Or, combined with algorithms that identify a person’s sex, age-estimation software could help target specific audiences for specific advertisements. For example, a store display might advertise a new automobile or boat as a man walks by, or new clothing or cosmetics as a woman walks by.

“All of this can be done without violating anyone’s privacy,” Huang said. “Our software does not identify specific individuals. It just estimates their ages.”

Huang is affiliated with the university’s Center for Advanced Study, Coordinated Science Laboratory, Information Trust Institute, and department of computer science.

Funding was provided by the National Science Foundation and the Intelligence Advanced Research Projects Activity. The researchers published their findings in the two journals IEEE Transactions on Multimedia and IEEE Transactions on Image Processing in 2008.

Editor’s note: To reach Thomas Huang, call 217-244-1638; e-mail: thuang1@illinois.edu

James E. Kloeppel | University of Illinois
Further information:
http://www.illinois.edu
http://www.news.uiuc.edu/news/08/0923age.html

More articles from Information Technology:

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

nachricht Researchers catch extreme waves with higher-resolution modeling
15.02.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>