Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New star tracker for satellites

04.08.2009
Small satellites are an exciting option for space projects because their launch costs are relatively low. Before using them for Earth observation or other tasks, however, there are still some technical challenges to be met.

This is what scientists of the University of Würzburg are currently concerned with.

Satellites are launched into orbit by means of carrier rockets. The larger and heavier they are, the more expensive the endeavor: "In case of really bulky satellites weighing several tons, the launch costs range from 50 to 150 million euros, depending on the launch rocket," says Professor Hakan Kayal of the Department of Computer Engineering at the University of Würzburg.

In contrast, the launch of a miniaturized one-kilogram satellite costs only about 40,000 euros. The Würzburg computer scientists have already gained some experience in working with satellites of this scale. The first specimen of the UWE (University of Würzburg Experimental Satellite) was launched into orbit in 2005; UWE-2 is to follow suit early in September.

"A particularly promising strategy is to let several miniaturized satellites cooperate as sensor networks," explains Professor Kayal. This means: The satellites are able to perform simultaneous measurements at different positions in the orbit - gathering much more detailed information than would be possible with only one large satellite.

Position control of the satellites in space

Collecting data on planet Earth, localizing orbital space debris or observing remote galaxies: All this and more could be implemented with a fleet of miniaturized satellites. For most of the applications, e.g. for Earth observation, a precisely defined orientation of the satellites is of the highest significance. Without active position control, a satellite would spin in space uncontrollably, for which zero gravity is to blame.

Star trackers evaluate star images

How can the position of a satellite be controlled in space? For this task, the satellite needs high-precision sensors to determine its current position. According to Professor Kayal, the most suitable devices for his purpose are so-called star trackers: They evaluate star images that they have previously captured with a camera. After recognizing a certain star pattern, they can autonomously process this information and clearly identify the orientation of the satellite.

In the next step, the satellite has to be pointed to the desired direction, e.g. through the interaction of small internal wheels. If one of the wheels turns, the satellite moves to the opposite direction under zero gravity conditions. "If you have at least one wheel per axis, you can turn the satellite to any spatial direction," says Hakan Kayal.

Objective: star tracker for miniaturized satellites

Most of the larger satellites already have star trackers in operation. Now, a star tracker for miniaturized satellites to be named STELLA, scheduled to be ready for launch within two years, is planned to be developed and manufactured at the University of Würzburg. Hakan Kayal's project is funded by the German Aerospace Center (DLR) with just under half a million euros. Two scientific assistants and four student assistants are allocated to take part in the project. Furthermore, some additional students are to be involved within the scope of a master's or bachelor's thesis. A new bachelor degree program in aerospace engineering will start at the University of Würzburg in the winter 2009/10.

"The new star tracker will considerably expand the applicability of pico- and nanosatellites," predicts the Würzburg professor. The established classification system defines pico- and nanosatellites as satellites with a weight between 0.1 and 1 kg (pico) or between 1 and 10 kg (nano).

Localization of space debris in orbit

In future, the Würzburg team wants to use the star tracker for research projects requiring on-board processing of image data. Autonomous destination planning of satellites or the localization of orbital space debris are examples of such projects.

The latter issue is considered to be urgent: According to Hakan Kayal, the risk of damage to satellites in orbit through space debris has significantly increased in recent years. At the same time, the dependence of people on the infrastructure in orbit for such purposes as communication, navigation or Earth observation has risen.

So far, there is no European system in existence for monitoring space events. Therefore, the European Space Agency (ESA) has just recently started a new program: It is envisioned to provide Europe with an independent capability to find all objects in orbit and to assess and avoid possible risks to the operation of its satellites. Professor Kayal wants to make his contribution to the implementation of this task.

Contact

Prof. Dr. Hakan Kayal, T +49 (0)931 - 31-86649, kayal@informatik.uni-wuerzburg.de

Appointed in April 2008, Hakan Kayal is Professor for Spacecraft Control and System Design at the Department of Computer Engineering (Robotics and Telematics) of the University of Würzburg.

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Information Technology:

nachricht Gecko adhesion technology moves closer to industrial uses
13.12.2017 | Georgia Institute of Technology

nachricht New silicon structure opens the gate to quantum computers
12.12.2017 | Princeton University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>