Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spreading high-speed Internet to rural areas

18.03.2009
A high-powered laser offers a low-cost way to spread broadband to sparsely-populated areas

To cut the cost of bringing high-speed Internet to rural areas, Dr. Ka Lun Lee and colleagues at the University of Melbourne and NEC Australia in the state of Victoria are experimenting with a way to boost the reach of existing technology.

Their results, which show a new way to cheaply cover 99 percent of those living in this province, will be presented during the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), taking place March 22-26 in San Diego.

The 21st century has seen a big push to close the digital divide that separates people in cities from people in rural areas. Even as this divide has closed somewhat in recent years, high-speed Internet is often unavailable, or too costly, for those who live far from the city. According to a 2008 report by the Pew Internet and American Life Research Project, the number of broadband users in rural areas is still about a third less than in urban areas in the United States.

Traditional high-speed services used by city-dwellers -- like DSL or cable -- require extensive networks of equipment and lines out in the field. The cost of this infrastructure increases rapidly as the size of the covered area increases. Other technologies like satellite and fixed wireless offer wider coverage, but are often unreliable and expensive.

Gigabit passive optical networks (GPON) -- used, for example, by Verizon's FiOS service -- provide the lowest cost at higher bitrates, says Lee. These networks carry data long distances over optical fibers to passive optical splitters, which split the signal to individual households. Currently, the reach of this technology into rural areas is limited by the loss in signal strength along the optical fiber, and each line can only radiate out approximately 19 miles from a central office.

According to Lee's calculations, 19 miles is not enough to reach rural areas. In Victoria, Australia's most densely populated state, this reach would leave a large fraction of the rural population off of the grid. In other more spread out parts of Australia and the world at large, this number of people on the wrong side of the digital divide is likely to be even higher. Current strategies for increasing the area covered require the installation of new, costly components in the field or a switch to other systems not compatible with current standards.

To boost the reach of GPON, Lee and his team use a device called a Raman amplifier. Installed in the central office of a network provider, this high-powered laser feeds the optical signal that carries information with energy as it heads out over a fiber. This increases the power and reach of the signal by a factor of almost ten.

To see how far such a network could reach, Lee's team built a mock network with a signal transmitter, a simulated splitter, and a receiver at the other end. Their proof-of-concept experiment successful transmitted data over 37 miles of single mode fiber, error-free, at a speed of 2.5 Gb/s.

According to Lee's data, a reach of 37 miles would allow the existing offices of network providers to service 99 percent of all Australians living in Victoria. The technology may have an added cost benefit for urban areas. With added reach, a number of central offices of network providers could be closed down to save money on real estate, says Lee.

The biggest drawback of the system in its current form is the question of safety. The supercharged signal will require additional safety measures, and a more careful inspection for breaks in fibers.

"We have proven that long-reach PON is cost-competitive with other broadband technologies in rural areas and can easily provide much higher access speeds," says Lee. He believes that the technology may also be useful in other countries like the United States. The next steps are to investigate ways to enhance the system performance further and to construct a prototype.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

nachricht Seeing the next dimension of computer chips
11.10.2017 | Osaka University

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Shallow soils promote savannas in South America

20.10.2017 | Earth Sciences

How Obesity Promotes Breast Cancer

20.10.2017 | Life Sciences

How the smallest bacterial pathogens outwit host immune defences by stealth mechanisms

20.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>