Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Spreading high-speed Internet to rural areas

18.03.2009
A high-powered laser offers a low-cost way to spread broadband to sparsely-populated areas

To cut the cost of bringing high-speed Internet to rural areas, Dr. Ka Lun Lee and colleagues at the University of Melbourne and NEC Australia in the state of Victoria are experimenting with a way to boost the reach of existing technology.

Their results, which show a new way to cheaply cover 99 percent of those living in this province, will be presented during the Optical Fiber Communication Conference and Exposition/National Fiber Optic Engineers Conference (OFC/NFOEC), taking place March 22-26 in San Diego.

The 21st century has seen a big push to close the digital divide that separates people in cities from people in rural areas. Even as this divide has closed somewhat in recent years, high-speed Internet is often unavailable, or too costly, for those who live far from the city. According to a 2008 report by the Pew Internet and American Life Research Project, the number of broadband users in rural areas is still about a third less than in urban areas in the United States.

Traditional high-speed services used by city-dwellers -- like DSL or cable -- require extensive networks of equipment and lines out in the field. The cost of this infrastructure increases rapidly as the size of the covered area increases. Other technologies like satellite and fixed wireless offer wider coverage, but are often unreliable and expensive.

Gigabit passive optical networks (GPON) -- used, for example, by Verizon's FiOS service -- provide the lowest cost at higher bitrates, says Lee. These networks carry data long distances over optical fibers to passive optical splitters, which split the signal to individual households. Currently, the reach of this technology into rural areas is limited by the loss in signal strength along the optical fiber, and each line can only radiate out approximately 19 miles from a central office.

According to Lee's calculations, 19 miles is not enough to reach rural areas. In Victoria, Australia's most densely populated state, this reach would leave a large fraction of the rural population off of the grid. In other more spread out parts of Australia and the world at large, this number of people on the wrong side of the digital divide is likely to be even higher. Current strategies for increasing the area covered require the installation of new, costly components in the field or a switch to other systems not compatible with current standards.

To boost the reach of GPON, Lee and his team use a device called a Raman amplifier. Installed in the central office of a network provider, this high-powered laser feeds the optical signal that carries information with energy as it heads out over a fiber. This increases the power and reach of the signal by a factor of almost ten.

To see how far such a network could reach, Lee's team built a mock network with a signal transmitter, a simulated splitter, and a receiver at the other end. Their proof-of-concept experiment successful transmitted data over 37 miles of single mode fiber, error-free, at a speed of 2.5 Gb/s.

According to Lee's data, a reach of 37 miles would allow the existing offices of network providers to service 99 percent of all Australians living in Victoria. The technology may have an added cost benefit for urban areas. With added reach, a number of central offices of network providers could be closed down to save money on real estate, says Lee.

The biggest drawback of the system in its current form is the question of safety. The supercharged signal will require additional safety measures, and a more careful inspection for breaks in fibers.

"We have proven that long-reach PON is cost-competitive with other broadband technologies in rural areas and can easily provide much higher access speeds," says Lee. He believes that the technology may also be useful in other countries like the United States. The next steps are to investigate ways to enhance the system performance further and to construct a prototype.

Colleen Morrison | EurekAlert!
Further information:
http://www.osa.org

More articles from Information Technology:

nachricht Smart Computers
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht AI implications: Engineer's model lays groundwork for machine-learning device
18.08.2017 | Washington University in St. Louis

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>