Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting the Second: or, How to Cooperate When There's No Time to Talk

07.06.2016

Cooperation can be improved even when communication is too slow to be useful.

Exchange of information among team members may or may not be possible, depending on economic and physical constraints. An example of the latter arises in high-frequency trading (1), where messaging across widely dispersed members of a team would be too slow to be useful.


Companies invest ever increasing amounts of resources in order to access high-speed communication networks. Here: partial map of the Internet based on the January 15, 2005 data. Source: www.opte.org

The research of Pierfrancesco La Mura (HHL Leipzig Graduate School of Management) and Adam Brandenburger (NYU Stern School of Business) studies scenarios where direct communication is indeed unavailable, but team members can use their shared global environment to achieve highly effective coordination.

Trading at the Speed of Light, and Beyond

High-frequency traders rely on fast computers, algorithms, and live feeds of financial data from various exchanges in order to decide what and when to buy or sell. Within this environment every millisecond is important, and quicker data links between exchanges minimize the time it takes to obtain new information or to make a trade. As a consequence, companies invest ever increasing amounts of resources in order to access high-speed communication networks, or to host their trading servers as close as possible to the pipeline of important information.

A recent article from Nature (2) explains that, on financial markets, the physical limits of communication have been already reached. While the NASDAQ server processes a new trade every 0.5 milliseconds, the time needed for communication from, say, New York to Shanghai, even at the speed of light, exceeds 40 milliseconds. Given that such physical limits cannot be overcome, Prof. La Mura and his co-author investigated what other opportunities are available to high-frequency traders and other distributed teams in order to improve cooperation even when communication is not possible.

Quantum-Assisted Trading

One guiding question was: Could it be that in the area of team decision-making, as in cryptography and computing, the availability of quantum resources may lead to improved performance over what is possible in a classical environment?

The authors found that access to a quantum network, on which traders active at widely separated locations can make certain measurements on quantum bits generated and transmitted to them from a common source, can enable them to improve their joint performance. The key quantum feature behind the performance improvement is the somewhat “telepathic” ability of quantum particles to show coordinated behavior even when they are widely separated in space and time. The process is based on a well-studied quantum set-up going back to Bell (3), and discussed as a team decision problem in La Mura (4).

Prof. La Mura says: “Our solution was to show how cooperation can be improved even when communication is too slow to be useful. This is not obtained by trying to out-speed other traders; rather, successful cooperation can arise from balancing market activity at separate locations”.

For instance, two high-frequency traders at separate locations who both wish to buy or sell a certain asset would do better operating on different markets, so that they do not need to compete against each other. But if one wishes to sell and the other buy the same asset, then they would do better operating on the same market. Access to a quantum network would allow the traders to avoid each other when of the same type, while increasing the probability that they’ll share the same market when they are of opposite types.
The research led to a publication in the prestigious Philosophical Transactions of The Royal Society A (5). Prof. La Mura explains that this line of research also led to a new patent application together with NYU, and to an ongoing business project involving partners from the US financial intermediation sector.

Adam Brandenburger is J.P. Valles Professor at the New York University, Leonard N. Stern School of Business.

Pierfrancesco La Mura holds the Chair of Economics and Information Systems at HHL Leipzig Graduate School of Management.

References

(1) Pagnotta E, Philippon T. ‘Competing on speed’ NBER Working Paper 17652 (2011); available at https://archive.nyu.edu/bitstream/2451/31369/2/CompetingOnSpeed.pdf
(2) Buchanan M. ‘Physics in finance: Trading at the speed of light’ Nature (11 February 2015); available at http://nature.com/news/physics-in-finance-trading-at-the-speed-of-light-1.16872.
(3) Bell J ‘On the Einstein–Podolsky–Rosen paradox’ Physics 1, 195–200 (1964).
(4) La Mura P. ‘Correlated equilibria of classical strategic games with quantum signals’ Int. J. Quantum Inf. 3, 183–188 (2005).
(5) Brandenburger A., La Mura P. ‘Team decision problems with classical and quantum signals’. Philosophical Transactions of the Royal Society A (30 November 2015); available at http://rsta.royalsocietypublishing.org/content/374/2058/20150096

Volker Stößel | idw - Informationsdienst Wissenschaft

Further reports about: HHL Transactions physical limits quantum network speed of light

More articles from Information Technology:

nachricht Japanese researchers develop ultrathin, highly elastic skin display
19.02.2018 | University of Tokyo

nachricht Why bees soared and slime flopped as inspirations for systems engineering
19.02.2018 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>