Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting the Second: or, How to Cooperate When There's No Time to Talk

07.06.2016

Cooperation can be improved even when communication is too slow to be useful.

Exchange of information among team members may or may not be possible, depending on economic and physical constraints. An example of the latter arises in high-frequency trading (1), where messaging across widely dispersed members of a team would be too slow to be useful.


Companies invest ever increasing amounts of resources in order to access high-speed communication networks. Here: partial map of the Internet based on the January 15, 2005 data. Source: www.opte.org

The research of Pierfrancesco La Mura (HHL Leipzig Graduate School of Management) and Adam Brandenburger (NYU Stern School of Business) studies scenarios where direct communication is indeed unavailable, but team members can use their shared global environment to achieve highly effective coordination.

Trading at the Speed of Light, and Beyond

High-frequency traders rely on fast computers, algorithms, and live feeds of financial data from various exchanges in order to decide what and when to buy or sell. Within this environment every millisecond is important, and quicker data links between exchanges minimize the time it takes to obtain new information or to make a trade. As a consequence, companies invest ever increasing amounts of resources in order to access high-speed communication networks, or to host their trading servers as close as possible to the pipeline of important information.

A recent article from Nature (2) explains that, on financial markets, the physical limits of communication have been already reached. While the NASDAQ server processes a new trade every 0.5 milliseconds, the time needed for communication from, say, New York to Shanghai, even at the speed of light, exceeds 40 milliseconds. Given that such physical limits cannot be overcome, Prof. La Mura and his co-author investigated what other opportunities are available to high-frequency traders and other distributed teams in order to improve cooperation even when communication is not possible.

Quantum-Assisted Trading

One guiding question was: Could it be that in the area of team decision-making, as in cryptography and computing, the availability of quantum resources may lead to improved performance over what is possible in a classical environment?

The authors found that access to a quantum network, on which traders active at widely separated locations can make certain measurements on quantum bits generated and transmitted to them from a common source, can enable them to improve their joint performance. The key quantum feature behind the performance improvement is the somewhat “telepathic” ability of quantum particles to show coordinated behavior even when they are widely separated in space and time. The process is based on a well-studied quantum set-up going back to Bell (3), and discussed as a team decision problem in La Mura (4).

Prof. La Mura says: “Our solution was to show how cooperation can be improved even when communication is too slow to be useful. This is not obtained by trying to out-speed other traders; rather, successful cooperation can arise from balancing market activity at separate locations”.

For instance, two high-frequency traders at separate locations who both wish to buy or sell a certain asset would do better operating on different markets, so that they do not need to compete against each other. But if one wishes to sell and the other buy the same asset, then they would do better operating on the same market. Access to a quantum network would allow the traders to avoid each other when of the same type, while increasing the probability that they’ll share the same market when they are of opposite types.
The research led to a publication in the prestigious Philosophical Transactions of The Royal Society A (5). Prof. La Mura explains that this line of research also led to a new patent application together with NYU, and to an ongoing business project involving partners from the US financial intermediation sector.

Adam Brandenburger is J.P. Valles Professor at the New York University, Leonard N. Stern School of Business.

Pierfrancesco La Mura holds the Chair of Economics and Information Systems at HHL Leipzig Graduate School of Management.

References

(1) Pagnotta E, Philippon T. ‘Competing on speed’ NBER Working Paper 17652 (2011); available at https://archive.nyu.edu/bitstream/2451/31369/2/CompetingOnSpeed.pdf
(2) Buchanan M. ‘Physics in finance: Trading at the speed of light’ Nature (11 February 2015); available at http://nature.com/news/physics-in-finance-trading-at-the-speed-of-light-1.16872.
(3) Bell J ‘On the Einstein–Podolsky–Rosen paradox’ Physics 1, 195–200 (1964).
(4) La Mura P. ‘Correlated equilibria of classical strategic games with quantum signals’ Int. J. Quantum Inf. 3, 183–188 (2005).
(5) Brandenburger A., La Mura P. ‘Team decision problems with classical and quantum signals’. Philosophical Transactions of the Royal Society A (30 November 2015); available at http://rsta.royalsocietypublishing.org/content/374/2058/20150096

Volker Stößel | idw - Informationsdienst Wissenschaft

Further reports about: HHL Transactions physical limits quantum network speed of light

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>