Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Splitting the Second: or, How to Cooperate When There's No Time to Talk

07.06.2016

Cooperation can be improved even when communication is too slow to be useful.

Exchange of information among team members may or may not be possible, depending on economic and physical constraints. An example of the latter arises in high-frequency trading (1), where messaging across widely dispersed members of a team would be too slow to be useful.


Companies invest ever increasing amounts of resources in order to access high-speed communication networks. Here: partial map of the Internet based on the January 15, 2005 data. Source: www.opte.org

The research of Pierfrancesco La Mura (HHL Leipzig Graduate School of Management) and Adam Brandenburger (NYU Stern School of Business) studies scenarios where direct communication is indeed unavailable, but team members can use their shared global environment to achieve highly effective coordination.

Trading at the Speed of Light, and Beyond

High-frequency traders rely on fast computers, algorithms, and live feeds of financial data from various exchanges in order to decide what and when to buy or sell. Within this environment every millisecond is important, and quicker data links between exchanges minimize the time it takes to obtain new information or to make a trade. As a consequence, companies invest ever increasing amounts of resources in order to access high-speed communication networks, or to host their trading servers as close as possible to the pipeline of important information.

A recent article from Nature (2) explains that, on financial markets, the physical limits of communication have been already reached. While the NASDAQ server processes a new trade every 0.5 milliseconds, the time needed for communication from, say, New York to Shanghai, even at the speed of light, exceeds 40 milliseconds. Given that such physical limits cannot be overcome, Prof. La Mura and his co-author investigated what other opportunities are available to high-frequency traders and other distributed teams in order to improve cooperation even when communication is not possible.

Quantum-Assisted Trading

One guiding question was: Could it be that in the area of team decision-making, as in cryptography and computing, the availability of quantum resources may lead to improved performance over what is possible in a classical environment?

The authors found that access to a quantum network, on which traders active at widely separated locations can make certain measurements on quantum bits generated and transmitted to them from a common source, can enable them to improve their joint performance. The key quantum feature behind the performance improvement is the somewhat “telepathic” ability of quantum particles to show coordinated behavior even when they are widely separated in space and time. The process is based on a well-studied quantum set-up going back to Bell (3), and discussed as a team decision problem in La Mura (4).

Prof. La Mura says: “Our solution was to show how cooperation can be improved even when communication is too slow to be useful. This is not obtained by trying to out-speed other traders; rather, successful cooperation can arise from balancing market activity at separate locations”.

For instance, two high-frequency traders at separate locations who both wish to buy or sell a certain asset would do better operating on different markets, so that they do not need to compete against each other. But if one wishes to sell and the other buy the same asset, then they would do better operating on the same market. Access to a quantum network would allow the traders to avoid each other when of the same type, while increasing the probability that they’ll share the same market when they are of opposite types.
The research led to a publication in the prestigious Philosophical Transactions of The Royal Society A (5). Prof. La Mura explains that this line of research also led to a new patent application together with NYU, and to an ongoing business project involving partners from the US financial intermediation sector.

Adam Brandenburger is J.P. Valles Professor at the New York University, Leonard N. Stern School of Business.

Pierfrancesco La Mura holds the Chair of Economics and Information Systems at HHL Leipzig Graduate School of Management.

References

(1) Pagnotta E, Philippon T. ‘Competing on speed’ NBER Working Paper 17652 (2011); available at https://archive.nyu.edu/bitstream/2451/31369/2/CompetingOnSpeed.pdf
(2) Buchanan M. ‘Physics in finance: Trading at the speed of light’ Nature (11 February 2015); available at http://nature.com/news/physics-in-finance-trading-at-the-speed-of-light-1.16872.
(3) Bell J ‘On the Einstein–Podolsky–Rosen paradox’ Physics 1, 195–200 (1964).
(4) La Mura P. ‘Correlated equilibria of classical strategic games with quantum signals’ Int. J. Quantum Inf. 3, 183–188 (2005).
(5) Brandenburger A., La Mura P. ‘Team decision problems with classical and quantum signals’. Philosophical Transactions of the Royal Society A (30 November 2015); available at http://rsta.royalsocietypublishing.org/content/374/2058/20150096

Volker Stößel | idw - Informationsdienst Wissenschaft

Further reports about: HHL Transactions physical limits quantum network speed of light

More articles from Information Technology:

nachricht Drones that drive
27.06.2017 | Massachusetts Institute of Technology, CSAIL

nachricht Ahead of the Curve
27.06.2017 | Institute of Science and Technology Austria

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>