Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Sparse microwave imaging: A new concept in microwave imaging technology

Sparse microwave imaging is a novel concept in microwave imaging that is intended to deal with the problems of increasing microwave imaging system complexity caused by the requirements of the system applications.

Under the support of the 973 program "Study of theory, system and methodology of sparse microwave imaging", Chinese scientists have conducted considerable research into most aspects of sparse microwave imaging, including its fundamental theories, system design, performance evaluation and applications. Their work, consisting of a series of papers, was published in Science China Information Sciences 2012, vol. 55 (8), as a special issue on sparse microwave imaging.

These are flowcharts comparing the traditional microwave imaging process and the sparse microwave imaging process.
Credit: ©Science China Press

An overview of their work can be found in the paper written by Professor Wu YiRong and his Science and Technology group from the Microwave Imaging Laboratory at the Institute of Electronics of the Chinese Academy of Sciences, entitled "Sparse microwave imaging: Principles and Applications".

Microwave imaging is one of the two major tools of remote sensing, and has been widely used in fields such as agriculture, forestry, oceanic monitoring, topography mapping and military reconnaissance. The best known modern microwave imaging technology used in remote sensing is synthetic aperture radar (SAR), which transmits an electromagnetic wave toward the scene from a platform moving in a straight line, receives the radar echo and produces a high resolution microwave image via signal processing. Compared with optical sensing, microwave imaging has the ability to provide all-weather round-the-clock observation, and can be applied to deal with some special sensing requirements, including moving target detection and digital elevation model extraction.

As microwave imaging technology has been used in increasing numbers of fields, the users have of course raised demands for numerous new requirements for their microwave imaging systems. Among them, high resolution and a wide mapping swath are the basic requirements for modern microwave imaging systems. High resolution means that more details can be observed, and the wide mapping swath means larger observation areas.

According to microwave imaging theory – a theory that has not changed for over 60 years following the invention of SAR technology – the signal bandwidth and the system sampling rate determine the achievable resolution and swath of the microwave imaging system. The only way to improve the signal bandwidth and sampling rate is to increase the system complexity, i.e., to use hardware that is larger, heavier and demands greater power consumption. However, we must eventually reach a limit to the increases in system complexity, and Moore's Law could not hold forever. The concept of sparse microwave imaging was therefore developed.

Sparse microwave imaging introduces sparse signal processing theory to microwave imaging as a replacement for conventional signal processing schemes based on matched filtering. Sparse signal processing was a concept that was developed by mathematicians in the late 1990s, and includes a set of mathematical tools designed to deal with sparse signals – a signal is sparse when most of the elements of the signal are (or are very close to) zero. Thanks to the extraordinary work known as compressive sensing by D. Donoho, E. Candès and T. Tao over the last decade, sparse signal processing theory, and compressive sensing theory in particular, has become a focal point for research in current signal processing fields. Essentially, sparse signal processing theory asserts that, if a signal is sparse, then it can be measured with far fewer samples than would be required for traditional sampling schemes, and can then be perfectly reconstructed from these few samples via sparse reconstruction algorithms.

If we introduce sparse signal processing theory to microwave imaging, we can then achieve sparse microwave imaging. However, while the concept sounds simple, the combination of sparse signal processing with microwave imaging is in fact quite a complex problem. The difficulties include: the method used to obtain a sparse representation of a scene, determination of the constraints of sparse observation, and efficient and robust reconstruction of the microwave image from the sparse observation data.
Consider, for example, the sparse representation problem. We know that sparse signal processing theory can only deal with sparse signals, but, unfortunately, the observed scenes are usually not sparse. In optical sensing, although an optical picture is not always sparse, it can be expected to have a sparse representation in a transform domain such as the discrete cosine transform (DCT) domain or a wavelet domain. However, we are not so lucky in microwave imaging. To date, no universally applicable transform domain has been found that would enable microwave imaging scenes to have sparse representations. We can only deal with a scene that it is sparse itself.

Another example is the reconstruction algorithm. Mathematicians have developed many sparse reconstruction algorithms with various features, and some of them can feasibly be used in sparse microwave imaging, but one problem remains: calculation efficiency. The size of microwave imaging scenes is always very large, especially in wide mapping swath applications. Experimental results show that the calculation time duration – which can usually be counted in months – is unacceptable when the scene is large. In positive news, some accelerated algorithms have been derived by Chinese scientists.

Sparse microwave imaging theory and technology can be applied in two ways: to design new systems, and to improve existing microwave imaging devices. As a new microwave imaging concept, we can of course design optimized microwave imaging systems using sparse microwave imaging theory for guidance. We can also use the signal processing methods of sparse microwave imaging to improve the imaging performance of the existing microwave devices, e.g. to increase the image distinguishability, reduce the sidelobes and reduce ambiguity. Discussions on both of these topics can be found in the special issue.

Sparse microwave imaging is believed to have the ability to resolve the conflict between growing microwave imaging performance requirements and increasing system complexity. Under this new microwave imaging concept, the system complexity could be reduced remarkably without adversely affecting the imaging performance. Although there are many problems with the technology that need to be solved, sparse microwave imaging can be expected to have a bright future.

See the article: Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: Principles and applications. SCIENCE CHINA Information Science, 2012, 55(8): 1722-1754

WU YiRong | EurekAlert!
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>