Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sparse microwave imaging: A new concept in microwave imaging technology

10.08.2012
Sparse microwave imaging is a novel concept in microwave imaging that is intended to deal with the problems of increasing microwave imaging system complexity caused by the requirements of the system applications.

Under the support of the 973 program "Study of theory, system and methodology of sparse microwave imaging", Chinese scientists have conducted considerable research into most aspects of sparse microwave imaging, including its fundamental theories, system design, performance evaluation and applications. Their work, consisting of a series of papers, was published in Science China Information Sciences 2012, vol. 55 (8), as a special issue on sparse microwave imaging.


These are flowcharts comparing the traditional microwave imaging process and the sparse microwave imaging process.
Credit: ©Science China Press

An overview of their work can be found in the paper written by Professor Wu YiRong and his Science and Technology group from the Microwave Imaging Laboratory at the Institute of Electronics of the Chinese Academy of Sciences, entitled "Sparse microwave imaging: Principles and Applications".

Microwave imaging is one of the two major tools of remote sensing, and has been widely used in fields such as agriculture, forestry, oceanic monitoring, topography mapping and military reconnaissance. The best known modern microwave imaging technology used in remote sensing is synthetic aperture radar (SAR), which transmits an electromagnetic wave toward the scene from a platform moving in a straight line, receives the radar echo and produces a high resolution microwave image via signal processing. Compared with optical sensing, microwave imaging has the ability to provide all-weather round-the-clock observation, and can be applied to deal with some special sensing requirements, including moving target detection and digital elevation model extraction.

As microwave imaging technology has been used in increasing numbers of fields, the users have of course raised demands for numerous new requirements for their microwave imaging systems. Among them, high resolution and a wide mapping swath are the basic requirements for modern microwave imaging systems. High resolution means that more details can be observed, and the wide mapping swath means larger observation areas.

According to microwave imaging theory – a theory that has not changed for over 60 years following the invention of SAR technology – the signal bandwidth and the system sampling rate determine the achievable resolution and swath of the microwave imaging system. The only way to improve the signal bandwidth and sampling rate is to increase the system complexity, i.e., to use hardware that is larger, heavier and demands greater power consumption. However, we must eventually reach a limit to the increases in system complexity, and Moore's Law could not hold forever. The concept of sparse microwave imaging was therefore developed.

Sparse microwave imaging introduces sparse signal processing theory to microwave imaging as a replacement for conventional signal processing schemes based on matched filtering. Sparse signal processing was a concept that was developed by mathematicians in the late 1990s, and includes a set of mathematical tools designed to deal with sparse signals – a signal is sparse when most of the elements of the signal are (or are very close to) zero. Thanks to the extraordinary work known as compressive sensing by D. Donoho, E. Candès and T. Tao over the last decade, sparse signal processing theory, and compressive sensing theory in particular, has become a focal point for research in current signal processing fields. Essentially, sparse signal processing theory asserts that, if a signal is sparse, then it can be measured with far fewer samples than would be required for traditional sampling schemes, and can then be perfectly reconstructed from these few samples via sparse reconstruction algorithms.

If we introduce sparse signal processing theory to microwave imaging, we can then achieve sparse microwave imaging. However, while the concept sounds simple, the combination of sparse signal processing with microwave imaging is in fact quite a complex problem. The difficulties include: the method used to obtain a sparse representation of a scene, determination of the constraints of sparse observation, and efficient and robust reconstruction of the microwave image from the sparse observation data.
Consider, for example, the sparse representation problem. We know that sparse signal processing theory can only deal with sparse signals, but, unfortunately, the observed scenes are usually not sparse. In optical sensing, although an optical picture is not always sparse, it can be expected to have a sparse representation in a transform domain such as the discrete cosine transform (DCT) domain or a wavelet domain. However, we are not so lucky in microwave imaging. To date, no universally applicable transform domain has been found that would enable microwave imaging scenes to have sparse representations. We can only deal with a scene that it is sparse itself.

Another example is the reconstruction algorithm. Mathematicians have developed many sparse reconstruction algorithms with various features, and some of them can feasibly be used in sparse microwave imaging, but one problem remains: calculation efficiency. The size of microwave imaging scenes is always very large, especially in wide mapping swath applications. Experimental results show that the calculation time duration – which can usually be counted in months – is unacceptable when the scene is large. In positive news, some accelerated algorithms have been derived by Chinese scientists.

Sparse microwave imaging theory and technology can be applied in two ways: to design new systems, and to improve existing microwave imaging devices. As a new microwave imaging concept, we can of course design optimized microwave imaging systems using sparse microwave imaging theory for guidance. We can also use the signal processing methods of sparse microwave imaging to improve the imaging performance of the existing microwave devices, e.g. to increase the image distinguishability, reduce the sidelobes and reduce ambiguity. Discussions on both of these topics can be found in the special issue.

Sparse microwave imaging is believed to have the ability to resolve the conflict between growing microwave imaging performance requirements and increasing system complexity. Under this new microwave imaging concept, the system complexity could be reduced remarkably without adversely affecting the imaging performance. Although there are many problems with the technology that need to be solved, sparse microwave imaging can be expected to have a bright future.

See the article: Zhang B C, Hong W, Wu Y R. Sparse microwave imaging: Principles and applications. SCIENCE CHINA Information Science, 2012, 55(8): 1722-1754

WU YiRong | EurekAlert!
Further information:
http://www.scichina.com/new_web_en/index.asp

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>