Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Space Laser To Prove Increased Broadband Possible

29.08.2013
When NASA’s Lunar Laser Communication Demonstration (LLCD) begins operation aboard the Lunar Atmosphere and Dust Environment Explorer (LADEE) mission managed by NASA’s Ames Research Center in Moffett Field, Calif., it will attempt to show two-way laser communication beyond Earth is possible, expanding the possibility of transmitting huge amounts of data. This new ability could one day allow for 3-D High Definition video transmissions in deep space to become routine.

“The goal of the LLCD experiment is to validate and build confidence in this technology so that future missions will consider using it,” said Don Cornwell, LLCD manager. “This unique ability developed by MIT (Massachusetts Institute of Technology Lincoln Laboratory), has incredible application possibilities and we are very excited to get this instrument off the ground.”


Artist's rendering of the LADEE satellite in orbit. Image Credit: NASA

Since NASA first ventured into space, through the moon landings, shuttle program, and unmanned exploration missions, radio frequency communication also known as RF, has been the communications platform used. But RF is reaching its limit just as demand for more data capacity continues to increase. The development of laser communications will give NASA the ability to extend communication applications such as increased image resolution and even 3-D video transmission into deep space.

LLCD is NASA’s first dedicated system for two-way communication using laser instead of radio waves. “LLCD is designed to send six times more data from the moon using a smaller transmitter with 25 percent less power as compared to the equivalent state-of-the-art radio (RF) system,” said Cornwell. “Lasers are also more secure and less susceptible to interference and jamming.”

The LLCD experiment is hosted aboard NASA’s LADEE: a 100-day robotic mission designed, built, integrated, tested and will be operated by Ames. LADEE will attempt to confirm whether dust caused a mysterious glow on the lunar horizon astronauts observed during several Apollo missions and explore the moon’s tenuous, exotic atmosphere. Launch of the LADEE spacecraft is set for September aboard a U.S. Air Force Minotaur V rocket, an excess ballistic missile converted into a space launch vehicle and operated by Orbital Sciences Corp. of Dulles, Va., from NASA’s Wallops Flight Facility on Wallops Island, Va.

The LADEE spacecraft will take 30 days to reach the moon because of its flight path. LLCD will begin operations shortly after arrival into lunar orbit and continue for 30 days afterward.

LLCD’s main mission objective is to transmit hundreds of millions of bits of data per second from the moon to Earth. This is equivalent to transmitting more than 100 HD television channels simultaneously. LLCD receiving capability will also be tested as tens of millions of bits per second are sent from Earth to the spacecraft. These demonstrations will prove the technology for increased bandwidth for future missions is possible.

There is a primary ground terminal at NASA’s White Sands Complex in New Mexico, to receive and transmit LLCD signals. The team at MIT designed, built, and tested the terminal. They also will be responsible for LLCD’s operation at that site.

There are two alternate sites, one located at NASA’s Jet Propulsion Laboratory in California, which is for receiving only. The other is being provided by the European Space Agency on the Spanish island of Tenerife, off the coast of Africa. It will have two-way communication capability with LLCD. “Having several sites gives us alternatives which greatly reduces the possibility of interference from clouds,” said Cornwell.

LLCD is a short duration experiment and the precursor to NASA’s long duration demonstration, the Laser Communications Relay Demonstration (LCRD). It also is a part of the agency’s Technology Demonstration Missions Program, which is working to develop crosscutting technology capable of operating in the rigors of space. LCRD is scheduled to launch in 2017.

NASA engineers believe this technology becomes even more advantageous for communications beyond Earth’s orbit. In the past, NASA has experimented with sending low amounts of individual pulses to cameras on far-away space probes near Jupiter, Mars, and Mercury.

Recently, an image of Leonardo da Vinci’s painting, the Mona Lisa, was transmitted to NASA’s Lunar Reconnaissance Orbiter (LRO) spacecraft orbiting the moon. “But this was done at only hundreds of data bits per second,” said Cornwell. “LLCD will be the first dedicated optical communication system and will send data millions of times faster.”

The European Space Agency already has successfully demonstrated laser communication between satellites in Earth orbit. Recently they launched Alphasat to demonstrate laser transmission between a low-earth orbit satellite and a satellite in geostationary Earth orbit. LLCD’s laser link from the moon will be ten times farther away.

NASA is looking upon laser communication as the next paradigm shift in future space communication, especially deep space. “We can even envision such a laser-based system enabling a robotic mission to an asteroid,” said Cornwell. “It could have 3-D, high-definition video signals transmitted to Earth providing essentially ‘telepresence’ to a human controller on the ground.”

Related Links:
YouTube: http://youtu.be/ptfLfrWI648
LLCD SVS page is: http://svs.gsfc.nasa.gov/vis/a010000/a011300/a011345/
More information on LLCD, visit: http://llcd.gsfc.nasa.gov
More information about the LADEE mission, visit: http://www.nasa.gov/ladee
Dewayne Washington
NASA's Goddard Space Flight Center

Dewayne Washington | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/space-laser-to-prove-increased-broadband-possible/#.Uh5hYHf3Mg8

More articles from Information Technology:

nachricht Construction of practical quantum computers radically simplified
05.12.2016 | University of Sussex

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>