Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software for the visual analysis of genome-wide expression data

05.10.2010
Biologists use modern high-density micro arrays to measure the genome-wide expression of exons, the essential parts of alternatively spliced genes.

In particular, exons of many genes encode protein variants involved with important cellular processes. While the measured differences between the variants are often quite small, their distinct biological effects can be profound. Protein variants from the same gene might even have opposing functional consequences.

Therefore, scientists from the Max Planck Institute for Informatics, Saarbrücken, Germany, and the Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA, developed innovative software to analyze exon expression data.

The new software package for the analysis of the massive data generated by exon micro arrays consists of the programs AltAnalyze (http://www.altanalyze.org) and DomainGraph (http://www.domaingraph.de) and is amenable even to biologists without programming knowledge and experience in bioinformatics. It is the first software that allows researchers not only to perform statistical data analysis, but also to evaluate the biological implications of alternative splicing on cellular processes.

“Once we realized the need for the joint statistical and visual analysis of this type of expression data, we decided to combine our efforts and work towards a free software product that would be both user-friendly and comprehensive in its scope,” says Mario Albrecht, research group leader at the Max Planck Institute and this year’s recipient of the international HUPO Early Career Investigator Award for outstanding young proteome researchers.

The conceptual aim of the software is to provide researchers with an easily accessible way of producing and interpreting statistical results for their large expression data files. Thus, the analysis results can be visualized in the context of molecular networks and pathways, supporting different levels of molecular details so that the biological user is not overwhelmed by the data deluge. “Rather than just providing statistical results as long and cryptic tables, our software empowers users to visually explore the functional consequences of the identified protein variants in mammalian cells. Researchers can readily study the resulting biological differences such as altered protein function and pathway interactions together with the measured exon expression values,” explains Dorothea Emig, research scientist at the Max Planck Institute.

“While mainstream biology has embraced the analysis of gene expression, the extent of alternative splicing has not been researched yet at genomic scale. However, this basic mechanism can have tremendous influence on how cells respond under normal conditions and disease. Our software tools help bringing this kind of science to the forefront of biology research,” adds her cooperation partner Nathan Salomonis, postdoctoral fellow at the Gladstone Institute.

Recently, this software provided Salomonis and colleagues with new predictions on protein variant functioning and targeting by small inhibitory RNAs, which were further validated in embryonic stem cells. “With the software results in hand, the user is presented with functional hypotheses that can be readily tested in further lab experiments. They will have a much greater likelihood of being relevant to the molecular processes of interest”, notes Bruce Conklin, senior investigator at the Gladstone Institute and professor of medical genetics at the University of California, San Francisco.

Original publications:
D. Emig, N. Salomonis, J. Baumbach, T. Lengauer, B.R Conklin, M. Albrecht (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res., 38:W755-762, DOI: 10.1093/nar/gkq405.

N. Salomonis, C.R. Schlieve, L. Pereira, C. Wahlquist, A. Colas, A.C. Zambon, K. Vranizan, M.J. Spindler, A.R. Pico, M.S. Cline, T.A. Clark, A. Williams, J.E. Blume, E. Samal, M. Mercola, B.J. Merrill, B.R. Conklin (2010) Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl. Acad. Sci. USA, 107:10514-10519, DOI: 10.1073/pnas.0912260107.

Contact:
Dr. Mario Albrecht
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Germany
Tel.: +49-681-9325-327
Fax: +49-681-9325-399
E-Mail: mario.albrecht@mpi-inf.mpg.de
WWW: http://medbioinf.mpi-inf.mpg.de
Samir Hammann
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Germany
Tel: +49-681-9325-454
E-Mail: s.hammann@mpi-inf.mpg.de

Samir Hammann | Max-Planck-Institut
Further information:
http://medbioinf.mpi-inf.mpg.de

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>