Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software for the visual analysis of genome-wide expression data

05.10.2010
Biologists use modern high-density micro arrays to measure the genome-wide expression of exons, the essential parts of alternatively spliced genes.

In particular, exons of many genes encode protein variants involved with important cellular processes. While the measured differences between the variants are often quite small, their distinct biological effects can be profound. Protein variants from the same gene might even have opposing functional consequences.

Therefore, scientists from the Max Planck Institute for Informatics, Saarbrücken, Germany, and the Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA, developed innovative software to analyze exon expression data.

The new software package for the analysis of the massive data generated by exon micro arrays consists of the programs AltAnalyze (http://www.altanalyze.org) and DomainGraph (http://www.domaingraph.de) and is amenable even to biologists without programming knowledge and experience in bioinformatics. It is the first software that allows researchers not only to perform statistical data analysis, but also to evaluate the biological implications of alternative splicing on cellular processes.

“Once we realized the need for the joint statistical and visual analysis of this type of expression data, we decided to combine our efforts and work towards a free software product that would be both user-friendly and comprehensive in its scope,” says Mario Albrecht, research group leader at the Max Planck Institute and this year’s recipient of the international HUPO Early Career Investigator Award for outstanding young proteome researchers.

The conceptual aim of the software is to provide researchers with an easily accessible way of producing and interpreting statistical results for their large expression data files. Thus, the analysis results can be visualized in the context of molecular networks and pathways, supporting different levels of molecular details so that the biological user is not overwhelmed by the data deluge. “Rather than just providing statistical results as long and cryptic tables, our software empowers users to visually explore the functional consequences of the identified protein variants in mammalian cells. Researchers can readily study the resulting biological differences such as altered protein function and pathway interactions together with the measured exon expression values,” explains Dorothea Emig, research scientist at the Max Planck Institute.

“While mainstream biology has embraced the analysis of gene expression, the extent of alternative splicing has not been researched yet at genomic scale. However, this basic mechanism can have tremendous influence on how cells respond under normal conditions and disease. Our software tools help bringing this kind of science to the forefront of biology research,” adds her cooperation partner Nathan Salomonis, postdoctoral fellow at the Gladstone Institute.

Recently, this software provided Salomonis and colleagues with new predictions on protein variant functioning and targeting by small inhibitory RNAs, which were further validated in embryonic stem cells. “With the software results in hand, the user is presented with functional hypotheses that can be readily tested in further lab experiments. They will have a much greater likelihood of being relevant to the molecular processes of interest”, notes Bruce Conklin, senior investigator at the Gladstone Institute and professor of medical genetics at the University of California, San Francisco.

Original publications:
D. Emig, N. Salomonis, J. Baumbach, T. Lengauer, B.R Conklin, M. Albrecht (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res., 38:W755-762, DOI: 10.1093/nar/gkq405.

N. Salomonis, C.R. Schlieve, L. Pereira, C. Wahlquist, A. Colas, A.C. Zambon, K. Vranizan, M.J. Spindler, A.R. Pico, M.S. Cline, T.A. Clark, A. Williams, J.E. Blume, E. Samal, M. Mercola, B.J. Merrill, B.R. Conklin (2010) Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl. Acad. Sci. USA, 107:10514-10519, DOI: 10.1073/pnas.0912260107.

Contact:
Dr. Mario Albrecht
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Germany
Tel.: +49-681-9325-327
Fax: +49-681-9325-399
E-Mail: mario.albrecht@mpi-inf.mpg.de
WWW: http://medbioinf.mpi-inf.mpg.de
Samir Hammann
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Germany
Tel: +49-681-9325-454
E-Mail: s.hammann@mpi-inf.mpg.de

Samir Hammann | Max-Planck-Institut
Further information:
http://medbioinf.mpi-inf.mpg.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>