Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New software for the visual analysis of genome-wide expression data

Biologists use modern high-density micro arrays to measure the genome-wide expression of exons, the essential parts of alternatively spliced genes.

In particular, exons of many genes encode protein variants involved with important cellular processes. While the measured differences between the variants are often quite small, their distinct biological effects can be profound. Protein variants from the same gene might even have opposing functional consequences.

Therefore, scientists from the Max Planck Institute for Informatics, Saarbrücken, Germany, and the Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA, developed innovative software to analyze exon expression data.

The new software package for the analysis of the massive data generated by exon micro arrays consists of the programs AltAnalyze ( and DomainGraph ( and is amenable even to biologists without programming knowledge and experience in bioinformatics. It is the first software that allows researchers not only to perform statistical data analysis, but also to evaluate the biological implications of alternative splicing on cellular processes.

“Once we realized the need for the joint statistical and visual analysis of this type of expression data, we decided to combine our efforts and work towards a free software product that would be both user-friendly and comprehensive in its scope,” says Mario Albrecht, research group leader at the Max Planck Institute and this year’s recipient of the international HUPO Early Career Investigator Award for outstanding young proteome researchers.

The conceptual aim of the software is to provide researchers with an easily accessible way of producing and interpreting statistical results for their large expression data files. Thus, the analysis results can be visualized in the context of molecular networks and pathways, supporting different levels of molecular details so that the biological user is not overwhelmed by the data deluge. “Rather than just providing statistical results as long and cryptic tables, our software empowers users to visually explore the functional consequences of the identified protein variants in mammalian cells. Researchers can readily study the resulting biological differences such as altered protein function and pathway interactions together with the measured exon expression values,” explains Dorothea Emig, research scientist at the Max Planck Institute.

“While mainstream biology has embraced the analysis of gene expression, the extent of alternative splicing has not been researched yet at genomic scale. However, this basic mechanism can have tremendous influence on how cells respond under normal conditions and disease. Our software tools help bringing this kind of science to the forefront of biology research,” adds her cooperation partner Nathan Salomonis, postdoctoral fellow at the Gladstone Institute.

Recently, this software provided Salomonis and colleagues with new predictions on protein variant functioning and targeting by small inhibitory RNAs, which were further validated in embryonic stem cells. “With the software results in hand, the user is presented with functional hypotheses that can be readily tested in further lab experiments. They will have a much greater likelihood of being relevant to the molecular processes of interest”, notes Bruce Conklin, senior investigator at the Gladstone Institute and professor of medical genetics at the University of California, San Francisco.

Original publications:
D. Emig, N. Salomonis, J. Baumbach, T. Lengauer, B.R Conklin, M. Albrecht (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res., 38:W755-762, DOI: 10.1093/nar/gkq405.

N. Salomonis, C.R. Schlieve, L. Pereira, C. Wahlquist, A. Colas, A.C. Zambon, K. Vranizan, M.J. Spindler, A.R. Pico, M.S. Cline, T.A. Clark, A. Williams, J.E. Blume, E. Samal, M. Mercola, B.J. Merrill, B.R. Conklin (2010) Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc. Natl. Acad. Sci. USA, 107:10514-10519, DOI: 10.1073/pnas.0912260107.

Dr. Mario Albrecht
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Tel.: +49-681-9325-327
Fax: +49-681-9325-399
Samir Hammann
Max Planck Institute for Computer Science
Campus E1.4
66123 Saarbrücken
Tel: +49-681-9325-454

Samir Hammann | Max-Planck-Institut
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>