Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software to Test Cybersecurity Systems for Flaws

27.01.2010
In 1971, an enterprising hacker discovered that the plastic whistle that came in a Captain Crunch cereal box precisely reproduced the 2600-hertz tone needed to access AT&T’s long-distance computer network. For his efforts, he got free phone calls, according to California’s Office of Information Security, which recently recounted the incident.

Cybersecurity systems are tougher to crack these days, but not tough enough. “When you work in cybersecurity, everything has to be just right,” said Prof. Christopher Lynch, chair of Clarkson University’s Division of Mathematics and Computer Science. “One little thing might be off, and that’s the hole the intruder needs to come through and get everything.”

To prevent that, Lynch is developing software programs that will test cybersecurity systems for flaws before they become operational. The National Science Foundation is funding the $1.2 million project, which involves Clarkson and four other research centers – the University at Albany-SUNY, the University of New Mexico, the University of Illinois, and the Naval Research Laboratory.

Lynch works in a mathematical realm called automated reasoning -- teaching machines to think. In his current project, Lynch wants to teach machines to scan cybersecurity systems for glitches. People could do the job, but not as well. “A machine works better because the job requires speed, keeping track of many things at one time, plus the work is tedious,” said Lynch. “A human might not consider all the alternatives, and they would make mistakes.”

The project is so complex that it requires the input of specialists at five research centers. “We have different expertise,” said Lynch, a professor of computer science. “I know automated reasoning. My colleague at the Naval Research Center is an expert in cryptographic protocols (instructions written in code). One of us alone cannot do this.”

For many of us, cybersecurity means using passwords and keeping them secret. In Lynch’s world, hackers steal information and disable computer systems with barrages of junk. It’s a world where computers talk to each other, creating openings through which hackers can intercept information or substitute their own. Sometimes hackers dart in and out without being detected. “From the point of view of the criminal, the best thing is to get in and out without anybody knowing about it – to make things look normal when they’re not,” said Lynch.

Lynch’s research comes as hackers have developed the capability to damage global commerce, penetrate national security networks, disrupt the electric grid, and derail pretty much everything else that depends on computers. As the threat grows, the current state of cybersecurity isn’t good enough. “An adequate national capability to respond to the growing cyber threat does not exist,” concluded a report issued by the National Telecommunications Advisory Committee in May 2009. Six weeks later, an orchestrated cyber attack struck 27 U.S. and South Korean government agencies and commercial Web sites, temporarily jamming more than a third of them, according to reports in The New York Times.

Lynch envisions a cybersecurity system with wide applications -- everything from banking to national security. “It would deal with pretty much anything where you need to be sure your information is kept secret,” he said. “The point is that almost everything in our lives today involves computers. We need them to be secure.”

Lynch and his collaborators want their programs to find cybersecurity flaws in a system before it hits the commercial market, but their software could also be used to look for flaws in products already in circulation.

Still, whatever Lynch and his colleagues come up with to combat these problems won’t work indefinitely. Periodically, it will need to be reworked as computers evolve and hackers find new ways to access data.

“When we finish this project, it’s not going to be the end,” said Lynch. “We come up with better ways to protect our data, and then people who are trying to steal our data come up with better ways of doing that. It’s a battle back and forth. I don’t think there will ever be a point where we’ve solved the problem.”

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Information Technology:

nachricht Stable magnetic bit of three atoms
21.09.2017 | Sonderforschungsbereich 668

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>