Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software to Test Cybersecurity Systems for Flaws

27.01.2010
In 1971, an enterprising hacker discovered that the plastic whistle that came in a Captain Crunch cereal box precisely reproduced the 2600-hertz tone needed to access AT&T’s long-distance computer network. For his efforts, he got free phone calls, according to California’s Office of Information Security, which recently recounted the incident.

Cybersecurity systems are tougher to crack these days, but not tough enough. “When you work in cybersecurity, everything has to be just right,” said Prof. Christopher Lynch, chair of Clarkson University’s Division of Mathematics and Computer Science. “One little thing might be off, and that’s the hole the intruder needs to come through and get everything.”

To prevent that, Lynch is developing software programs that will test cybersecurity systems for flaws before they become operational. The National Science Foundation is funding the $1.2 million project, which involves Clarkson and four other research centers – the University at Albany-SUNY, the University of New Mexico, the University of Illinois, and the Naval Research Laboratory.

Lynch works in a mathematical realm called automated reasoning -- teaching machines to think. In his current project, Lynch wants to teach machines to scan cybersecurity systems for glitches. People could do the job, but not as well. “A machine works better because the job requires speed, keeping track of many things at one time, plus the work is tedious,” said Lynch. “A human might not consider all the alternatives, and they would make mistakes.”

The project is so complex that it requires the input of specialists at five research centers. “We have different expertise,” said Lynch, a professor of computer science. “I know automated reasoning. My colleague at the Naval Research Center is an expert in cryptographic protocols (instructions written in code). One of us alone cannot do this.”

For many of us, cybersecurity means using passwords and keeping them secret. In Lynch’s world, hackers steal information and disable computer systems with barrages of junk. It’s a world where computers talk to each other, creating openings through which hackers can intercept information or substitute their own. Sometimes hackers dart in and out without being detected. “From the point of view of the criminal, the best thing is to get in and out without anybody knowing about it – to make things look normal when they’re not,” said Lynch.

Lynch’s research comes as hackers have developed the capability to damage global commerce, penetrate national security networks, disrupt the electric grid, and derail pretty much everything else that depends on computers. As the threat grows, the current state of cybersecurity isn’t good enough. “An adequate national capability to respond to the growing cyber threat does not exist,” concluded a report issued by the National Telecommunications Advisory Committee in May 2009. Six weeks later, an orchestrated cyber attack struck 27 U.S. and South Korean government agencies and commercial Web sites, temporarily jamming more than a third of them, according to reports in The New York Times.

Lynch envisions a cybersecurity system with wide applications -- everything from banking to national security. “It would deal with pretty much anything where you need to be sure your information is kept secret,” he said. “The point is that almost everything in our lives today involves computers. We need them to be secure.”

Lynch and his collaborators want their programs to find cybersecurity flaws in a system before it hits the commercial market, but their software could also be used to look for flaws in products already in circulation.

Still, whatever Lynch and his colleagues come up with to combat these problems won’t work indefinitely. Periodically, it will need to be reworked as computers evolve and hackers find new ways to access data.

“When we finish this project, it’s not going to be the end,” said Lynch. “We come up with better ways to protect our data, and then people who are trying to steal our data come up with better ways of doing that. It’s a battle back and forth. I don’t think there will ever be a point where we’ve solved the problem.”

Clarkson University launches leaders into the global economy. One in six alumni already leads as a CEO, VP or equivalent senior executive of a company. Located just outside the Adirondack Park in Potsdam, N.Y., Clarkson is a nationally recognized research university for undergraduates with select graduate programs in signature areas of academic excellence directed toward the world’s pressing issues. Through 50 rigorous programs of study in engineering, business, arts, sciences and health sciences, the entire learning-living community spans boundaries across disciplines, nations and cultures to build powers of observation, challenge the status quo, and connect discovery and engineering innovation with enterprise.

Michael P. Griffin | Newswise Science News
Further information:
http://www.clarkson.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>