Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Software to Support Interest in Extreme Science

03.05.2011
Today the University of Chicago's Flash Center for Computational Science will release a major new version of supercomputer code, called FLASH 4-alpha. Based on previous software for simulating exploding stars, this is the first version of the FLASH code that has extensive capabilities for simulating high-energy density physics experiments.

The U.S. Department of Energy's National Nuclear Security Administration Advanced Simulation and Computing Program has funded the addition of the new capabilities to this software, which will help scientists at universities across the nation better understand the fundamental properties of matter at high densities and high temperatures.

"The enhanced FLASH code is an open toolset for designing and analyzing experiments that address questions about the nature of planetary interiors, the creation of elements via nuclear processes, and how matter behaves in violent shocks and other extreme conditions," said Don Lamb, Flash Center director and the Robert A. Millikan Distinguished Service Professor in Astronomy & Astrophysics at UChicago.

The code will support academic HEDP research at a variety of laboratories, including major national facilities such as the National Ignition Facility at Lawrence Livermore National Laboratory in California, the Z machine at Sandia National Laboratories in New Mexico and the Omega Laser Facility at the University of Rochester.

"These facilities use extremely powerful lasers or large amounts of electric current to generate conditions that allow scientists to investigate and address important issues in areas such as astrophysics, material science, planetary science and fusion energy," said Milad Fatenejad, a Flash Center research scientist. "Simulations play a vital role in demonstrating the viability of proposed experiments and analyzing experimental results. The enhanced FLASH code will be able to fill both of these roles."

The Flash Center is already using the new capabilities in FLASH to simulate radiative shock experiments conducted by the Center for Radiative Shock Hydrodynamics at the University of Michigan and at the Omega Laser Facility, said Fatenejad.

LLNL and other laboratories have developed highly capable codes for in-house research in HEDP, Lamb said. "Unlike FLASH, these codes were never designed with the academic community in mind," he said. "Having a workhorse open toolset for scientists at universities is absolutely essential, and until now has not existed."

The addition of new HEDP capabilities in the FLASH code has benefited from a collaboration the Flash Center has initiated with scientists at the universities of Michigan and Wisconsin, and at Los Alamos National Laboratory and Lawrence Livermore National Laboratory.

"We are very excited about the science these new capabilities will make possible," said Flash Center associate director Anshu Dubey. "The Center has been able to add HEDP capabilities to the FLASH code and make it run efficiently on the next generation of computers thanks to a decade of funding by the DOE NNSA ASC

Academic Strategic Alliance Program and recent funding by the DOE Office of Advanced Scientific Computing Research, as well as access to the world's fastest computers through the NNSA ASC Program and the Office of Science INCITE Program."

The new software is a collaboration between the Center, the University's Computation Institute and Argonne National Laboratory. DOE funding for the initiative is through the Argonne Institute for Computing in Science.

More than 700 scientists worldwide have used FLASH code, and they have published more than 400 papers reporting results based on its use. Although most of these scientists have used FLASH for astrophysical research, others have modified it for simulating atmospheric physics and biological processes. IBM, NVIDIA and other companies have also licensed FLASH to test and develop hardware and software.

Steve Koppes | Newswise Science News
Further information:
http://www.uchicago.edu

More articles from Information Technology:

nachricht Ultra-precise chip-scale sensor detects unprecedentedly small changes at the nanoscale
18.01.2017 | The Hebrew University of Jerusalem

nachricht Data analysis optimizes cyber-physical systems in telecommunications and building automation
18.01.2017 | Fraunhofer-Institut für Algorithmen und Wissenschaftliches Rechnen SCAI

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>