Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software for the interactive visual analysis of protein structure and function

19.05.2011
Proteins are essential molecules that participate in most cellular processes. Biologists are therefore particularly interested in the complex relationships between protein structure and function.

A key research issue is the study of individual residues, the building blocks of proteins, and their interactions in the 3D protein structure. Scientists at the Max Planck Institute for Informatics, Saarbruecken, Germany, developed innovative software for the detailed analysis and visualization of residue interactions in protein structures.

To date, the 3D structures of several 10,000 proteins have been determined experimentally. The structures are usually visualized and analyzed in 3D viewers to understand protein function on the molecular level. However, the visual complexity of protein structures renders it difficult to focus on individual residues and their long-range molecular interactions.

Researchers at the Max Planck Institute for Informatics now offer the new software tools RINalyzer and RINerator (http://www.rinalyzer.de) that support the automated generation, visualization, and interactive analysis of residue interaction networks (RINs). A RIN is derived from the corresponding 3D protein structure and consists of network nodes and connecting edge lines that represent protein residues and their interactions, respectively. Recent studies have shown that RINs are especially useful for identifying functionally important residues and characterizing their impact on protein structure and function.

"We already applied RINs successfully to characterize the functional effect of residue changes that are located far away from the drug-binding site in protein structures. In the past, we had to perform the analysis and the visualization manually because no such tool as RINalyzer was available," explains Francisco S. Domingues, who has recently moved from the Max Planck Institute to EURAC research in Bolzano, Italy.

RINalyzer is the first tool that combines the 3D structure view of a protein with its network representation. Protein residues selected in a RIN are automatically highlighted in the 3D protein structure, and vice versa. "To investigate complex protein-structure relationships, we provide molecular biologists with free, user-friendly software. The rich versatility of RINalyzer does not require previous network analysis expertise or programming knowledge from the users," says Nadezhda T. Doncheva, research scientist at the Max Planck Institute.

RINalyzer is complemented by the large online database RINdata that contains over 50,000 precomputed RINs for most protein structures in the publicly available Protein Data Bank. "Our novel tools have the great potential to become a standard application for biologists alongside other existing approaches to protein structure visualization," notes Mario Albrecht, research group leader at the Max Planck Institute in the local Cluster of Excellence on Multimodal Computing and Interaction.

Original publication
N.T. Doncheva, K. Klein, F.S. Domingues, M. Albrecht (2011) Analyzing and visualizing residue networks of protein structures. Trends in Biochemical Sciences, 36(4): 179-182. DOI:10.1016/j.tibs.2011.01.002.
Further information
Dr. Mario Albrecht
Max Planck Institute for Informatics
Campus E1 4
66123 Saarbrücken
Germany
Tel.: +49-681-9325-3027
Fax: +49-681-9325-3099
E-Mail: mario.albrecht@mpi-inf.mpg.de
WWW: http://medbioinf.mpi-inf.mpg.de
Press contact
Bertram Somieski
Max Planck Institute for Informatics
Max Planck Institute for Software Systems
Joined Administration
Tel +49-681-9325-5710 -- somieski@mpi-inf.mpg.de

Bertram Somieski | Max-Planck-Institut
Further information:
http://medbioinf.mpi-inf.mpg.de

More articles from Information Technology:

nachricht Deep Learning predicts hematopoietic stem cell development
21.02.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Sensors embedded in sports equipment could provide real-time analytics to your smartphone
16.02.2017 | University of Illinois College of Engineering

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>