Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New software for the interactive visual analysis of protein structure and function

19.05.2011
Proteins are essential molecules that participate in most cellular processes. Biologists are therefore particularly interested in the complex relationships between protein structure and function.

A key research issue is the study of individual residues, the building blocks of proteins, and their interactions in the 3D protein structure. Scientists at the Max Planck Institute for Informatics, Saarbruecken, Germany, developed innovative software for the detailed analysis and visualization of residue interactions in protein structures.

To date, the 3D structures of several 10,000 proteins have been determined experimentally. The structures are usually visualized and analyzed in 3D viewers to understand protein function on the molecular level. However, the visual complexity of protein structures renders it difficult to focus on individual residues and their long-range molecular interactions.

Researchers at the Max Planck Institute for Informatics now offer the new software tools RINalyzer and RINerator (http://www.rinalyzer.de) that support the automated generation, visualization, and interactive analysis of residue interaction networks (RINs). A RIN is derived from the corresponding 3D protein structure and consists of network nodes and connecting edge lines that represent protein residues and their interactions, respectively. Recent studies have shown that RINs are especially useful for identifying functionally important residues and characterizing their impact on protein structure and function.

"We already applied RINs successfully to characterize the functional effect of residue changes that are located far away from the drug-binding site in protein structures. In the past, we had to perform the analysis and the visualization manually because no such tool as RINalyzer was available," explains Francisco S. Domingues, who has recently moved from the Max Planck Institute to EURAC research in Bolzano, Italy.

RINalyzer is the first tool that combines the 3D structure view of a protein with its network representation. Protein residues selected in a RIN are automatically highlighted in the 3D protein structure, and vice versa. "To investigate complex protein-structure relationships, we provide molecular biologists with free, user-friendly software. The rich versatility of RINalyzer does not require previous network analysis expertise or programming knowledge from the users," says Nadezhda T. Doncheva, research scientist at the Max Planck Institute.

RINalyzer is complemented by the large online database RINdata that contains over 50,000 precomputed RINs for most protein structures in the publicly available Protein Data Bank. "Our novel tools have the great potential to become a standard application for biologists alongside other existing approaches to protein structure visualization," notes Mario Albrecht, research group leader at the Max Planck Institute in the local Cluster of Excellence on Multimodal Computing and Interaction.

Original publication
N.T. Doncheva, K. Klein, F.S. Domingues, M. Albrecht (2011) Analyzing and visualizing residue networks of protein structures. Trends in Biochemical Sciences, 36(4): 179-182. DOI:10.1016/j.tibs.2011.01.002.
Further information
Dr. Mario Albrecht
Max Planck Institute for Informatics
Campus E1 4
66123 Saarbrücken
Germany
Tel.: +49-681-9325-3027
Fax: +49-681-9325-3099
E-Mail: mario.albrecht@mpi-inf.mpg.de
WWW: http://medbioinf.mpi-inf.mpg.de
Press contact
Bertram Somieski
Max Planck Institute for Informatics
Max Planck Institute for Software Systems
Joined Administration
Tel +49-681-9325-5710 -- somieski@mpi-inf.mpg.de

Bertram Somieski | Max-Planck-Institut
Further information:
http://medbioinf.mpi-inf.mpg.de

More articles from Information Technology:

nachricht Terahertz spectroscopy goes nano
20.10.2017 | Brown University

nachricht New software speeds origami structure designs
12.10.2017 | Georgia Institute of Technology

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>