Software for high content drug research using live cells

In the quest for new cancer drugs, this software supports the full workflow from cell detection to visualization and exploration. As live cells are studied, the results have a higher biological significance and allow characterizing active agents more precisely.

Bayer HealthCare Pharmaceuticals uses FIT's Zeta software in their high content drug research, a technology for discovering active pharmaceutical ingredients. The Zeta software is used to determine the cell division rate of cancer cells in live cell imaging, which allows characterizing active pharmaceutical ingredients much more precisely. Zeta helps to determine cell cycle phases and to monitor the cells across their full life cycle. Substances that affect the division rate of cancerous cells and change it in the desired direction may turn out to be a first active ingredient candidate which will then be further characterized and optimized.

With the Zeta software it is possible to track individual cells across their full life cycle and to monitor several cell generations. A special visualization tool makes it easy to explore the data, to find individual differences and to determine the causes for different reactions of the cells. With single assays the temporal kinetics of an effect can be studied or the start or the maximum of a substance's effect can be determined. The substance – and the structures they affect – can thus be characterized more precisely.

Specific markers are needed to identify the different phases of the cell cycle. Checkpoints that mark the transition from one phase to the next must be made visible for an automated analysis. Here we rely on a cell line from ChromoTek GmbH based on the Chromobody® technology, which was specifically developed for live cell imaging in high content drug research.

The Zeta software offers a simple and intuitive way to analyze complex processes during cell division. An easy-to-use interface guides the user through the complete analysis workflow. User interaction is required at important steps, in order to keep the analysis flexible and to let the user tailor the workflow to changing experimental requirements. One distinctive feature of Zeta is its plug-in architecture, which allows very flexible adaptation of the software. At program start a configuration file is used to load only those modules that are needed for the image analysis at hand. This modular architecture makes it easy to adapt Zeta to new analysis workflows.

Contact:
Alex Deeg
pr@fit.fraunhofer.de
Phone +49 2241 14-2208

Media Contact

Alex Deeg Fraunhofer-Institut

More Information:

http://www.fit.fraunhofer.de

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Machine learning algorithm reveals long-theorized glass phase in crystal

Scientists have found evidence of an elusive, glassy phase of matter that emerges when a crystal’s perfect internal pattern is disrupted. X-ray technology and machine learning converge to shed light…

Mapping plant functional diversity from space

HKU ecologists revolutionize ecosystem monitoring with novel field-satellite integration. An international team of researchers, led by Professor Jin WU from the School of Biological Sciences at The University of Hong…

Inverters with constant full load capability

…enable an increase in the performance of electric drives. Overheating components significantly limit the performance of drivetrains in electric vehicles. Inverters in particular are subject to a high thermal load,…

Partners & Sponsors