Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Software fits flexible components

25.03.2009
Car component designers not only have to ensure that their designs are visually appealing, they also have to think about the assembly process: Can the designed dashboard be easily installed in the new car model? What assembly paths need to be taken so that the component does not hit and scratch the car body?

Thanks to a new software program, components that only exist in the form of CAD data can be virtually installed in the new car model by the assembly planners. If a component is too large to be maneuvered into place, the program gives concrete advice on where to change its shape.

The software was developed and has now been further improved by researchers at the Fraunhofer-Chalmers Research Centre for Industrial Mathematics FCC in Gothenburg, Sweden, and the Fraunhofer Institute for Industrial Mathematics ITWM in Kaiserslautern. "We can also include the pliability of components in the assembly simulation," says ITWM group manager Dr.-Ing. Joachim Linn.

"In the CAD data, flexible components such as plastic parts for the passenger compartment appear rigid, but during assembly they have to be slightly bent and pressed." How much force needs to be applied to bend the dashboard far enough to install it in the car?

Can the job be done by just one employee and are special tools required? How can flexible brake hoses be installed most efficiently? The researchers also simulate the use of assembly robots, whose flexible supply lines often scrape against the car body, leaving small scratches. The program computes how the robot should move and fit the parts so that the cables do not hit the bodywork.

These computations are fast – like the CAD programs the designers are used to. "You can work interactively with the program, for example to make a component longer or shorter in just a few seconds. For this purpose we slimmed down the highly accurate structure-mechanical computation processes.

The results are still accurate enough but are delivered in real time," says Linn. Assembly paths, too, are computed within minutes. The researchers will give a live demonstration of the program at the Hannover-Messe (Hall 17, Stand D60) from April 20 to 24. The software is due to be launched on the market before the end of the year; support services and training material are already available.

Joachim Linn | EurekAlert!
Further information:
http://www.fraunhofer.de

More articles from Information Technology:

nachricht Drones can almost see in the dark
20.09.2017 | Universität Zürich

nachricht World first: 'Storing lightning inside thunder'
18.09.2017 | University of Sydney

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>