Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Software Alleviates Wireless Traffic

15.04.2013
The explosive popularity of wireless devices—from WiFi laptops to Bluetooth headsets to ZigBee sensor nodes—is increasingly clogging the airwaves, resulting in dropped calls, wasted bandwidth and botched connections.

New software being developed at the University of Michigan works like a stoplight to control the traffic and dramatically reduce interference.

The software, GapSense, lets these devices that can't normally talk to one another exchange simple stop and warning messages so their communications collide less often. GapSense creates a common language of energy pulses and gaps. The length of the gaps conveys the stop or warning message. Devices could send them at the start of a communication, or in between information packets to let other gadgets in the vicinity know about their plans.

"All these devices are supposed to perform their designated functions but they're using the same highway and fighting for space," said Kang Shin, the Kevin and Nancy O'Connor Professor of Computer Science at U-M. "Since they don't have a direct means of communicating with each other because they use different protocols, we thought, 'How can we coordinate them so that each can perform their functions while minimizing interference with the others?'"

The researchers tested GapSense and found that it could reduce interference by more than 88 percent on some networks with diverse devices. Shin and Xinyu Zhang, a former doctoral student in electrical engineering and computer science, will present the work April 18 at the IEEE International Conference on Computer Communications in Turin, Italy.

To get a sense of how many wireless devices exist today, in 2013, CTIA, the Wireless Association counted more than 321 million WiFi-enabled cell phones, laptops and tablets in the United States. That's more than one device per person, and it's just the items that use WiFi, the protocol that transmits big chunks of data over relatively long distances.

Bluetooth and ZigBee use the same wireless spectrum as WiFi, but they all speak different languages. Bluetooth, shorter range and less powerful, can connect headsets and keyboards to phones and computers, for example. ZigBee, the lowest powered of the group, links networks of small radios to automate home and building systems such as lighting, security alarms and thermostats. It's also found in hospitals, where it gathers medical data from patients.

All these devices are already equipped with the standard "carrier sense multiple access," or CSMA, protocol that programs them to listen for radio silence before they send their own transmissions. But often it doesn't work.

ZigBee takes 16 times longer than WiFi to gear up from its idle state to transmit information, so sometimes it might sound to WiFi that the coast is clear when a ZigBee packet is on its way out.

"The little guy might be talking, but big guy cannot hear it," Shin said. "So the little guy's communication will be destroyed."

That's just one of several potential problems GapSense can help remedy. The researchers tested the software in a simulated office environment. With moderate WiFi traffic, they detected a 45 percent collision rate between ZigBee and WiFi, and GapSense reduced that to 8 percent.

The software could also address the so-called "hidden terminal" problem. Newer WiFi standards allow for faster data rates on wider bandwidths than the standard 20 megahertz, but devices on different bandwidths can't hear one another's communications to avoid talking over them. GapSense could enable these devices on different standards to talk in turn. At moderate WiFi traffic, the researchers detected around 40 percent collision rate between wider- and narrower-bandwidth devices and GapSense reduced it to virtually zero.

GapSense could also reduce energy consumption of WiFi devices by 44 percent. It would accomplish this by allowing the WiFi receiver to operate at low clock rates. With the software, the faster-clocked WiFi transmitter could send a wake-up message to the slower-clocked receiver in time for it to synch and catch an information packet.

"The impact of GapSense is huge in my opinion," Shin said. "It could be the Tower of Babel for the increasingly diversified world of wireless devices."

The paper is titled "Gap Sense: Lightweight Coordination of Heterogeneous Wireless Devices." The work is funded by the National Science Foundation. The university is pursuing patent protection for the intellectual property and is seeking commercialization partners to help bring the technology to market.

Kang Shin: http://web.eecs.umich.edu/~kgshin

IEEE Infocom conference: http://infocom.di.unimi.it

Nicole Casal Moore | Newswise
Further information:
http://www.umich.edu

More articles from Information Technology:

nachricht UT professor develops algorithm to improve online mapping of disaster areas
29.11.2016 | University of Tennessee at Knoxville

nachricht New standard helps optical trackers follow moving objects precisely
23.11.2016 | National Institute of Standards and Technology (NIST)

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>