Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Snap, map, chat and hyperlink?

Hyperlinking reality is a huge advance for mobile navigation, interaction and for image recognition, but what can it actually do? Quite a lot, apparently, with more to come.

European researchers working in the MOBVIS project have successfully developed a system that can attach hyperlinks to real-world urban features. Users simply take a picture of a streetscape with their mobile phone and the MOBVIS system will do the rest.

It will accurately identify the features, such as buildings, monuments or even street furniture. It will then render relevant information by applying an icon, within the picture on your phone, to the feature. Simply click on the icon to get the information directly. MOBVIS can even identify logos and banners.

The potential range of applications is vast. Click the icon to get details about what bus routes are served by a particular stop, and at what time. Quickly scan today’s specials on a restaurant menu or the best shopping bargains on the street.

Interactive tourism

Tourism is an obvious application. Instead of getting a guidebook that people read to discover where to go, take a picture and find out the history and culture of where you are. See a building that looks interesting? Take a picture and find out more about it.

Real estate, too, could be a fertile application. If house hunters see an area they like, they can take a picture of the streetscape to find what is on offer. Then users would simply select the icons to get further information and, ultimately, perhaps book a viewing. These types of application are just the tip of the iceberg.

“Really, we do not know all the applications that could potentially be developed from a technology like this. We can easily imagine some of the obvious ones, but after that, who knows?” admits Lucas Paletta, coordinator of the MOBVIS project.

It is like SMS. When it first came out, it was merely a simple way to communicate between users and the network. But cash-strapped callers soon realised its potential for low-cost communication, and then came ring-tone distribution, wallpapers and any number of other commercial applications.

MOBVIS’ system can recognise urban semantic information, like pedestrian crossings and traffic signs, and it can extract from that meaningful information about the context of the image. The system knows, for example, that the user is walking through pedestrian zones with shops.


The context enables the system to localise areas within the image where specific features will occur. This extrapolation of detail from the context can help the system to recognise and interpret its surroundings, and direct the user to specific points within the city.

A further service developed in MOBVIS is mobile multimodal positioning, which simply means using information from a number of sensors, like GPS, inertial sensors, camera, step counter and so on. It can be particularly useful in areas where GPS signal quality is poor, such as urban canyons, and areas with a high degree of signal reflection.

At this point, the MOBVIS platform morphs from an interactive guide to a positioning system. This aspect of the system opens the way to geo-services, such as giving users directions.

MOBVIS partner Tele Atlas provided geo-referenced imagery to the project. Tele Atlas, a world leader in providing digital maps for various kinds of geo-services, continuously collects geo-referenced imagery on road and urban infrastructure. The company has a fleet of more than 50 mobile mapping vans worldwide, constantly collecting this data.

It was reference photographs taken by Tele Atlas mapping vans that seeded the MOBVIS database with its initial cityscapes, namely the inner cities of Graz (Austria), Ljubljana (Slovenia) and Darmstadt (Germany). Geo-referenced imagery from the streetscapes is now available as a resource, online, for the scientific community.

The system, allied to geo-services like those offered by Tele Atlas, could eventually produce a ‘seeing-eye’ mobile phone application, for the visually impaired, though this is currently a distant prospect. Such a system would need enormous testing and validation before it could go live, but it is a testament to the work of MOBVIS that the concept can even be considered.

Picture-driven search engine

All these factors mean that MOBVIS results have a very high potential for creating revolutionary applications.

The MOBVIS interface ultimately works like a picture-driven search engine about things that just surround the user. The picture is your search query, and the system matches the picture and the features it contains with results in its database.

Users then select the ‘search hits’ by picking the hyperlink on the object of interest. The particular contribution by MOBVIS is to enable free exploration of urban space instead of needing a guide to point to specific opportunities for interaction.

It really is a paradigm changing innovation, and one that will drive any number of new and emerging applications over the months and years to come.

This is part two of a three-part feature on MOBVIS by ICT Results.

The MOBVIS project received funding from the Future Emerging Technologies FET Open strategic objective within the ICT strand of the Sixth Framework Programme for research.

Christian Nielsen | alfa
Further information:

All articles from Information Technology >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>